Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T18:56:07.957Z Has data issue: false hasContentIssue false

The Hydrogenation Dynamics of h-BN Sheets

Published online by Cambridge University Press:  25 June 2013

Eric Perim
Affiliation:
Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil.
Ricardo Paupitz
Affiliation:
Departamento de Física, IGCE, Universidade Estadual Paulista, UNESP, 130506-900, Rio Claro, SP, Brazil.
P. A. S. Autreto
Affiliation:
Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil.
D. S. Galvao
Affiliation:
Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil.
Get access

Abstract

Hexagonal boron nitride (h-BN), also known as white graphite, is the inorganic analogue of graphite. Single layers of both structures have been already experimentally realized.

In this work we have investigated, through fully atomistic reactive molecular dynamics simulations, the dynamics of hydrogenation of h-BN single-layers membranes.

Our results show that the rate of hydrogenation atoms bonded to the membrane is highly dependent on the temperature and that only at low temperatures there is a preferential bond to boron atoms. Unlike graphanes (hydrogenated graphene), hydrogenated h-BN membranes do not exhibit the formation of correlated domains. Also, the out-of-plane deformations are more pronounced in comparison with the graphene case. After a critical number of incorporated hydrogen atoms the membrane become increasingly defective, lost its two-dimensional character and collapses. The hydrogen radial pair distribution and second-nearest neighbor correlations were also analyzed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S. et al. ., Science 306, 666 (2004).CrossRefGoogle Scholar
Cheng, S. H. et al. ., Phys. Rev. B 81, 205435 (2010).CrossRefGoogle Scholar
Withers, F., Duboist, M., and Savchenko, A. K., Phys. Rev. B 82, 073403 (2010).CrossRefGoogle Scholar
Sofo, J. O., Chaudari, A. S., and Barber, G. D., Phys. Rev. B 75, 153401 (2007).CrossRefGoogle Scholar
Elias, D. C. et al. ., Science 323, 610 (2009).CrossRefGoogle Scholar
Flores, M. Z. S., Autreto, P. A. S., Legoas, S. B., and Galvao, D. S., Nanotechnology 20, 465704 (2009).CrossRefGoogle Scholar
Nair, R. R. et al. ., Small 6, 2773 (2010).CrossRefGoogle Scholar
Paupitz, R., Autreto, P. A. S., Legoas, S. B., Srinivasan, S. G., van Duin, A. C. T., and Galvao, D. S., Nanotechnology 24, 035706 (2013).CrossRefGoogle Scholar
Jin, C., Lin, F., Suenaga, K., and Iijima, S., Phys. Rev. Lett. 102, 19 (2009).Google Scholar
Meyer, J. C., Chuvulin, A., Algara-Siller, G., Biskupek, J., and Kaiser, U., Nano Lett. 9, 2683 (2009).CrossRefGoogle Scholar
Song, L. et al. ., Nano Lett. 10, 5049 (2010).Google Scholar
van Duin, A. C. T., Dasgupta, S., Lorant, F., and Goddard, W. A. III, J. Phys. Chem. A 105, 9396 (2001).CrossRefGoogle Scholar
van Duin, A. C. T. and Damste, J. S. S., Org. Geochem. 34, 515 (2003).CrossRefGoogle Scholar
Han, S. S., Kang, J. K., Lee, H. M., van Duin, A. C. T., and Goddard, W. A. III, J. Chem. Phys. 123, 114703 (2005).CrossRefGoogle Scholar
Plimpton, S., J. Comp. Phys. 117, 1 (1995). http://lammps.sandia.gov/.CrossRefGoogle Scholar
dos Santos, R. P. B., Perim, E., Autreto, P. A. S., Brunetto, G., and Galvao, D. S., Nanotechnology 23, 465702 (2012).CrossRefGoogle Scholar