Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T18:58:00.011Z Has data issue: false hasContentIssue false

Hydrogenated amorphous silicon germanium by Hot Wire CVD as an alternative for microcrystalline silicon in tandem and triple junction solar cells

Published online by Cambridge University Press:  14 July 2014

L.W. Veldhuizen
Affiliation:
Eindhoven University of Technology (TU/e), Department of Applied Physics, Plasma & Materials Processing, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Y. Kuang
Affiliation:
Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, High Tech Campus 2, 5656 AE Eindhoven, The Netherlands
N.J. Bakker
Affiliation:
Energy research Center of the Netherlands (ECN), ECN-Solliance, High Tech Campus Building 2, 5656 AE Eindhoven, The Netherlands
C.H.M. van der Werf
Affiliation:
Energy research Center of the Netherlands (ECN), ECN-Solliance, High Tech Campus Building 2, 5656 AE Eindhoven, The Netherlands
S.-J. Yun
Affiliation:
Thin Film Solar Cell Technology Team, Convergence Components and Materials Research Laboratory, Electronics and Telecommunications Research Institute, 218 Gajeongno, Yuseong-gu, Daejeon 305-700, Republic of Korea
R.E.I. Schropp
Affiliation:
Eindhoven University of Technology (TU/e), Department of Applied Physics, Plasma & Materials Processing, P.O. Box 513, 5600 MB Eindhoven, The Netherlands Energy research Center of the Netherlands (ECN), ECN-Solliance, High Tech Campus Building 2, 5656 AE Eindhoven, The Netherlands
Get access

Abstract

We study hydrogenated amorphous silicon germanium (a-SiGe:H) deposited by HWCVD for the use as low band gap absorber in multijunction junction solar cells. We deposited layers with Tauc optical band gaps of 1.21 to 1.56 eV and studied the hydrogen bonding with FTIR for layers that were deposited at several reaction pressures. For our reaction conditions, we found an optimal reaction pressure of 38 µbar. The material that is obtained under these conditions does not meet all device quality requirements for a-SiGe:H, which is, as we hypothesize, caused by the presence of He that is used to dilute the GeH4 source gas. We present an initial single junction n-i-p solar cell with a Tauc optical band gap of 1.45 eV and a short circuit current density of 18.7 mA/cm2.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Guha, S., Cohen, D., Schiff, E., Stradins, P., Taylor, P.C., Yang, J., Photovoltaics International 13, 134 (2011).Google Scholar
Matsuda, A., Yagii, K., Koyama, M., Toyama, M., Imanishi, Y., Ikuchi, N., and Tanaka, K., Appl. Phys. Lett. 47, 1061 (1985).CrossRefGoogle Scholar
Xu, Y., Mahan, A.H., Gedvilas, L.M., Reedy, R.C., Branz, H.M., Thin Solid Films 501, 198 (2006).CrossRefGoogle Scholar
Mahan, A.H., Xu, Y., Gedvilas, L.M., Williamson, D.L., Thin Solid Films 517, 3532 (2009).CrossRefGoogle Scholar
Yang, J., Newton, L., and Fieselmann, B., in Amorphous and Heterogeneous Silicon-Based Films (Mater. Res. Soc. Symp. Proc. 149, Warrendale, PA, 1989) p. 497.Google Scholar
Shima, M., Isomura, M., Maruyama, E., Okamoto, S., Haku, H., Wakisaka, K., Kiyama, S., and Tsuda, S., Jpn. J. Appl. Phys. 37, 6322 A (1998).CrossRefGoogle Scholar
Catalano, A., Arya, R., Bennett, M., Yang, L., Morris, J., Goldstein, B., Fieselmann, B., Newton, J., and Wiedeman, S., Sol. Cells 27, 25 (1989).Google Scholar
O’Leary, S., Johnson, S., and Lim, P., J. Appl. Phys. 82, 3334 (1997).Google Scholar
Tauc, J., in Amorphous and liquid semiconductors (Plenum Press, London, 1974) p. 178.CrossRefGoogle Scholar
Brodsky, M.H., Cardona, M., Cuomo, J.J., Phys. Rev. B 16, 3556 (1977).CrossRefGoogle Scholar
Langford, A.A., Fleet, M.L., Nelson, B.P., Lanford, W.A., Maley, N., Phys. Rev. B 45, 13367 (1992).CrossRefGoogle Scholar
Chou, Y.P., and Lee, S.C., J. Appl. Phys. 83, 4111 (1998).CrossRefGoogle Scholar
Fang, C.J., Gruntz, K. J., Ley, L., Cardona, M., Demond, F.J., Müller, G., S. Kalbizer, , J. Non-Cryst. Solids 35-36 , 255 (1980).CrossRefGoogle Scholar
Morimoto, A., Miura, T., Kumeda, M., and Shimizu, T., Jpn. J. Appl. Phys. 20, L833 (1989).CrossRefGoogle Scholar
Daey Ouwens, J., Schropp, R.E.I., and van der Werf, W., Appl. Phys. Let. 65, 204 (1994).CrossRefGoogle Scholar
Mahan, A.H., Raboisson, P., Tsu, R., Appl. Phys. Lett. 50, 335 (1987).Google Scholar
Carlson, D.E., in Materials Issues in Amorphous Semiconductor Technology, edited by Adler, D., Hamakawa, Y., and Madan, A., (Mat. Res. Soc. Sym. Proc. 70 (Mater. Res. Soc. Symp. Proc. 70, Pittsburgh, PA, 1986), p. 467.Google Scholar
Paul, W., Paul, D.K., von Roedern, B., Blake, J., Oguz, S., Phys. Rev. Lett. 46, 1016 (1981).CrossRefGoogle Scholar
Molenbroek, E.C., Mahan, A.H., Gallagher, A., J. Appl. Phys. 82, 1909 (1997).CrossRefGoogle Scholar