No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Lithium based complex hydrides, including lithium aluminum hydrides and lithium borohydride (LiAlH4, Li3AlH6 and LiBH4), are among the most promising materials due to their high hydrogen contents. In the present work, we investigated the hydrogen storage properties of a new combined system of Li3AlH6-LiBH4. The samples were made with small amounts of catalyst under low energy milling conditions. Thermogravimetric analysis (TGA) of a Ti-doped Li3AlH6/2LiBH4 indicated that the degree of hydrogen release reached 7.3 wt. % by the time the sample reached 450iÆc under a heating rate of 2iÆC/min. This increased to 8.8 wt. % when the sample was held at 450iÆCfor additional 8 hours minutes under this condition. The dehydrogenation product was a mixture of LiH and AlB2. This product could be rehydrogenated up to 3.8 wt. % under 24.1 MPa hydrogen pressure and 450iÆC.