Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T05:39:15.107Z Has data issue: false hasContentIssue false

Hydrogen Storage Properties of a Combined Li3AlH6-LiBH4 System

Published online by Cambridge University Press:  01 February 2011

Young Joon Choi
Affiliation:
[email protected], University of Utah, Metallurgical Engineering, 135 S 1460 E Room 412, Salt Lake City, UT, 84112-0114, United States, 801-835-5907, 801-581-4937
Jun Lu
Affiliation:
[email protected], University of Utah, Metallurgical Engineering, 135 S 1460 E Room 412, Salt Lake City, UT, 84112-0114, United States
Hong Yong Sohn
Affiliation:
[email protected], University of Utah, Metallurgical Engineering, 135 S 1460 E Room 412, Salt Lake City, UT, 84112-0114, United States
Zak Fang
Affiliation:
[email protected], University of Utah, Metallurgical Engineering, 135 S 1460 E Room 412, Salt Lake City, UT, 84112-0114, United States
Get access

Abstract

Lithium based complex hydrides, including lithium aluminum hydrides and lithium borohydride (LiAlH4, Li3AlH6 and LiBH4), are among the most promising materials due to their high hydrogen contents. In the present work, we investigated the hydrogen storage properties of a new combined system of Li3AlH6-LiBH4. The samples were made with small amounts of catalyst under low energy milling conditions. Thermogravimetric analysis (TGA) of a Ti-doped Li3AlH6/2LiBH4 indicated that the degree of hydrogen release reached 7.3 wt. % by the time the sample reached 450iÆc under a heating rate of 2iÆC/min. This increased to 8.8 wt. % when the sample was held at 450iÆCfor additional 8 hours minutes under this condition. The dehydrogenation product was a mixture of LiH and AlB2. This product could be rehydrogenated up to 3.8 wt. % under 24.1 MPa hydrogen pressure and 450iÆC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bogdanovic, B., Schwickardi, M., J. Alloys Compd. 253, 1 (1997).Google Scholar
2 Zidan, R.A, Taraka, S., Hee, A.G., Jensen, C.M., J. Alloys Compd. 285, 119 (1999).Google Scholar
3 Balema, V.P, Dennis, K.W., Pecharsky, V.K., Chem. Commun. 17, 1665 (2000).Google Scholar
4 Chen, J., Kuriyama, N., Xu, Q., Takeshita, H.T., Sakai, T., J. Phys. Chem. B 105, 11214 (2001).Google Scholar
5 Jensen, C.M., Gross, K., J. Appl. Phys. A 72, 213 (2001).Google Scholar
6 Sun, D. L., Kiyobayashi, T., Takeshite, H.T., Kuriyama, N.,; Jensen, C.M., J. Alloys Compd. 337, 8 (2002).Google Scholar
7 Sandrock, G., Gross, K.J., Thomas, G., J. Alloys Compd. 339, 299 (2002).Google Scholar
8 Morioka, H., Kakizaki, K., Chung, S.C., Yamada, A., J. Alloys Compd. 353, 310 (2003).Google Scholar
9 Fichtner, M., Fuhr, O., Kircher, O., J. Alloys Compd. 356, 418 (2003).Google Scholar
10 Wang, J., Ebner, A.D., Ritter, J.A., J. Am. Chem. Soc. 128, 5949 (2006).Google Scholar
11 Miwa, K., Ohba, N., Towata, S., Phys. Rew. B 69, 245120 (2004).Google Scholar
12 Orimo, S., Nakamori, Y., A. Züttel, Mater. Sci. Eng. B 108, 51 (2004).Google Scholar
13 Vajo, J.J., Skeith, S.L., Mertens, F., J. Phys. Chem. B, 109, 3719 (2005).Google Scholar
14 Aoki, M., Miwa, K., Noritake, T., Kitahara, G., Nakamori, Y., Orimo, S., Towata, S., Appl. Phys. A 80, 1409 (2005).Google Scholar
15 Hauback, B.C., Brinks, H.W., Fjellvåg, H., J. Alloys Compd. 346, 184 (2002).Google Scholar
16 Brinks, H.W., Hauback, B.C., Norby, P., Fjellvåg, H., J. Alloys Compd. 351, 222 (2003).Google Scholar
17 Blanchard, D., Brinks, H.W., Hauback, B.C., Norby, P., Mater. Sci. Eng. B 108, 54 (2004).Google Scholar
18 Grochala, W., Edwards, P., Chem. Rev. 104, 1283 (2004).Google Scholar
19 Jang, J.-W., Shim, J.-H., Cho, Y.W., Lee, B.-J., J. Alloys Compd. 420, 286 (2006).Google Scholar
20 Orimo, S., Nakamori, Y., Kitahara, G., Miwa, K., Ohba, N., Towata, S., Züttel, A., J. Alloys Compd. 404–406, 427 (2005).Google Scholar
21 Suryanarayana, C., Prog. Mat. Sci. 46, 1 (2001).Google Scholar
22 Davis, R.M., McDermott, B., Koch, C.C., Metall. Trans. A 19, 2867 (1988).Google Scholar
24 Züttel, A., Wenger, P., Rentsch, S., Sudan, P., Mauron, Ph., Emmenegger, Ch., J. Power Sources 118, 1 (2003).Google Scholar
25 Au, M., Jurgensen, A., J. Phys. Chem. B 110, 7062 (2006).Google Scholar
26 Au, M., Jurgensen, A., Zeigler, K., J. Phys. Chem. B 110, 26482 (2006).Google Scholar
23 Shim, J.-H., Lee, G.-J., Cho, Y.W., J. Alloys Compd. 419, 176 (2006).Google Scholar