Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T03:12:59.783Z Has data issue: false hasContentIssue false

Hydrogen Storage in Single-Walled and Multi-Walled Carbon Nanotubes

Published online by Cambridge University Press:  10 February 2011

Seung Mi Lee
Affiliation:
Department of Semiconductor Science and Technology, Jeonbuk National University, Jeonju 561-756, Korea
Thomas Frauenheim
Affiliation:
Universitaet-GH Paderborn, Fachbereich Physik, Theoretische Physik, 33095 Paderborn, Germany
Marcus Elstner
Affiliation:
Department of Physics, Harvard University, Cambridge, MA 02138
Yong Gyoo Hwang
Affiliation:
Deparment of Physics, Wonkwang University, Iksan 570-749, Korea
Young Hee Lee*
Affiliation:
Department of Semiconductor Science and Technology, Jeonbuk National University, Jeonju 561-756, Korea Department of Physics and Semiconductor Physics Research Center, Jeonbuk National University, Jeonju 561-756, Korea, [email protected]
*
*To whom correspondence should be addressed.
Get access

Abstract

We performed density-functional calculations to search for adsorption sites and predict maximum hydrogen storage capacity in carbon nanotubes. Our calculations show that the storage capacity of hydrogen, limited by the repulsive forces between H2 molecules inside nanotubes, increases linearly with tube diameters in single-walled nanotubes, whereas this value is independent of tube diameters in multi-walled nanotubes. We predict that H storage capacity in (10,10) nanotubes can exceed 14 wt % (161 kg H2/m3).

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Iijima, S. and Ichihashi, T., Nature 363, 603 (1993).Google Scholar
[2] Dresselhaus, M. S. et al. , Science of Fullerenes and Carbon Nanotubes, Academic Press, 1996, Chapter 19.Google Scholar
[3] Hamada, N. et al. , Phys. Rev. Lett. 68, 1579 (1992).Google Scholar
[4] Oh, D.-H. and Lee, Y. H., Phys. Rev. B 58, 7407 (1998).Google Scholar
[5] Heer, W. A. de et al. , Science 270, 1179 (1995).Google Scholar
[6] Saito, R. et al. , Phys. Rev. B 59, 2388 (1999).Google Scholar
[7] Choi, W. B. et al. , Appl. Phys. Lett., in print.Google Scholar
[8] Dillon, A. C. et al. , Nature 386, 377 (1997).Google Scholar
[9] Ye, Y. et al. , Appl. Phys. Lett. 74, 2307 (1999).Google Scholar
[10] Chambers, A. et al. , J. Phys. Chem. 102, 4253 (1998).Google Scholar
[11] Nutzenadel, C. et al. , Electrochem. and Solid-State Lett. 2, 30 (1999).Google Scholar
[12] Elstner, M. et al. , Phys. Rev. B 58, 7260 (1998).Google Scholar
[13] We used DMo13 code, a registered software product of Molecular Simulations Inc.Google Scholar
[14] Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
[15] Becke, A. D., J. Chem. Phys. 88, 2547 (1988).Google Scholar
[16] Thess, A. et al. , Science 273, 483 (1996).Google Scholar
[17] Vinden, D., Handbook of batterys and fuel cells, McGraw-Hill, New York, 1984.Google Scholar