Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T08:07:16.004Z Has data issue: false hasContentIssue false

Hydrogen Segregation To Interfaces

Published online by Cambridge University Press:  25 February 2011

A. D. Marwick
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598
Joyce C. Liu
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598
W. Krakow
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598
R. D. Thompson
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

In order to achieve a better understanding of hydrogen segregation to interfaces, a combination of techniques is being used in which hydrogen is deliberately introduced into planar interfaces between thin films, then the segregation measured using highenergy ion-beam profiling techniques. Results are given for heterophase interfaces produced by epitaxial deposition on silicon: The AI/Si (111) and CoSi2/Si (001) interfaces. A preliminary study of Au tilt boundaries in thin-film bicrystals shows the presence of a large amount of hydrogen, ∼1016 atoms/cm2, in the boundary after plasma hydrogenation, but also the presence of C impurity (∼ 1.6 × 1015 atoms/cm2 ) and Ag. We conclude that some of the hydrogen in the boundary may have been chemically bound to the carbon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Jia, Y. O. and Qin, G. G., Appl. Phys. Lett. 56, 641 (1990).Google Scholar
[2] Tsaur, B., Mattia, J., and Chen, C. K., Appl. Phys. Lett. 57, 1111 (1990).Google Scholar
[3] Edwards, A. H., Phys. Rev. B 44, 1832 (1991).Google Scholar
[4] Asaoka, T., Dagbert, C., Aucouturier, M., and Galland, J., Scripta Met. 11, 467 (1977).Google Scholar
[5] Fukushima, H. and Birnbaum, H. K., Acta Metall. 32, 851 (1984).Google Scholar
[6] Birnbaum, H. K., Ladna, B., and Kimura, A., J. Phys. Colloq. 49, 397 (1988).Google Scholar
[7] Birnbaum, H. K., Ladna, B., and Sirois, E., Z. Physikal. Chemie Neue Folge 164, 1157 (1989).Google Scholar
[8] Bird, J. R. and Williams, J. S., Ion Beams for Materials Analysis (Academic Press, Sydney, 1989).Google Scholar
[9] LeGoues, F. K., Krakow, W., and Ho, N. R., Phil. Mag. A 53, 833 (1986).Google Scholar
[10] Liu, J., Marwick, A. D., and Legoues, F. K., Phys. Rev. B 44, 1861 (1991).Google Scholar
[11] Loretto, D., Gibson, J. M., and Yalisove, S. M., Phys. Rev. Lett. 63, 298 (1989).Google Scholar
[12] Loretto, D., Gibson, J. M., and Yalisove, S. M., Thin Solid Films 184, 309 (1990).Google Scholar
[13] Marwick, A. D., Liu, J. C., Zabel, T. H., and Doyle, J. P., (1991). Presented at 10th Conference on Ion Beam Analysis, Eindhoven, 1–5 July 1991. To be published in Nucl. Instrum. Methods.Google Scholar
[14] Brower, K. L., Phys. Rev. B 42, 3444 (1990).Google Scholar
[15] Schober, T. and Balluffi, R. W., Phil. Mag. 20, 511 (1969).CrossRefGoogle Scholar
[16] Hjörvarsson, B. and Rydén, J., Nucl. Instrum. Methods B 45, 36(1990).Google Scholar
[17] Ziegler, J., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
[18] Janssen, A. P., Venables, J. A., Hwang, J. C., and Baluffi, R. W., Philos. Mag. 36, 1537 (1977).Google Scholar
[19] Moody, N. R., Foiles, S. M. (1991). This symposium.Google Scholar