Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T00:09:50.896Z Has data issue: false hasContentIssue false

Hydrogen Passivated Carbon Acceptors in GaAs and AlAs: no Evidence for Carbon Donors

Published online by Cambridge University Press:  22 February 2011

B. R. Davidson
Affiliation:
IRC Semiconductor Materials, The Blackett Laboratory, Imperial College of Science, Technology and Medicine, London SW7 2BZ, UK
R. C. Newman
Affiliation:
IRC Semiconductor Materials, The Blackett Laboratory, Imperial College of Science, Technology and Medicine, London SW7 2BZ, UK
R. E. Pritchard
Affiliation:
IRC Semiconductor Materials, The Blackett Laboratory, Imperial College of Science, Technology and Medicine, London SW7 2BZ, UK
T. J. Bullough
Affiliation:
Department of Materials Science and Engineering, PO Box 147, Liverpool University, Liverpool L69 BX, UK
T. B. Joyce
Affiliation:
Department of Materials Science and Engineering, PO Box 147, Liverpool University, Liverpool L69 BX, UK
R. Jones
Affiliation:
Department of Physics, University of Exeter, Exeter EX44 QL, UK
S. Öberg
Affiliation:
Department of Mathematics, University of Luleå, Luleå, S95187, Sweden
Get access

Abstract

GaAs and AlAs layers grown by CBE and doped with either 12C or 13C have been passivated with hydrogen or deuterium. Infrared absorption lines due to hydrogen stretch modes, symmetric A1 modes and “carbon-like” E modes of H-CAs and D-CAs pairs have been assigned for both isotopes in both hosts. Comparisons have been made with new ab initio local density functional theory and simple harmonic models. Anticrossing behaviour is found for the two types of coupled E modes in the two hosts. The dynamics of the H-CAs centre are very similar in GaAs and AlAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rahbi, R., Pajot, B., Chevallier, J., Marbeuf, A., Logan, R. C. and Gavand, M., J. Appl. Phys. 73, 1723 (1993).Google Scholar
2. Jones, R. and Oberg, S., Phys. Rev. B, 44, 3673 (1991).Google Scholar
3. Clerjaud, B., Gendron, F., Krause, M. and Ulrici, W., Phys. Rev. Lett. 65, 1800 (1990).Google Scholar
4. Kosuch, D. M., Stavola, M., Pearton, S. J., Abernathy, C. R. and Lopata, J., Appl. Phys. Lett. 57, 2561 (1990).Google Scholar
5. Woodhouse, K., Newman, R. C., Lyon, T. J. de, Woodall, J. W., Scilla, G. J. and Cardone, F., Semicond. Sci. Technol. 6, 300 (1991).Google Scholar
6. Woodhouse, K., Newman, R. C., Nicklin, R., Bradley, R. R. and Sangster, M. J. L., J. Cryst. Growth 120, 323 (1992).Google Scholar
7. Wagner, J., Maier, M., Th. Lauterbach, Bachem, K. H., Fischer, A., Ploog, K., Morsch, G. and Kamp, M.., Phys. Rev. B, 45, 9120 (1992).Google Scholar
8. Ashwin, M. J., Davidson, B. R., Woodhouse, K., Newman, R. C., Bullough, T. J., Joyce, T. B., Nicklin, R. and Bradley, R. R., Semicond. Sci. Technol. 8, 625 (1993).Google Scholar
9. Pritchard, R. E., Davidson, B. R., Newman, R. C., Bullough, T. J., Joyce, T. B., Jones, R. and Öberg, S. 1993 (unpublished work).Google Scholar
10. Davidson, B. R., Newman, R. C., Bullough, T. J. and Joyce, T. B., Semicond. Sci. Technol. 8, 1783 (1993).Google Scholar
11. Davidson, B. R., Newman, R. C., Bullough, T. J. and Joyce, T. B., Phys. Rev. B in press.Google Scholar
12. Davidson, B. R., Newman, R. C., Pritchard, R. E., Robbie, D. A., M. Sangster, J. L., Wagner, J., Fisher, A. and Ploog, K., Semicond. Sci. Technol 8, 611 (1993).Google Scholar