Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T15:55:35.485Z Has data issue: false hasContentIssue false

Hydrogen Dilution of Silane: Correlation Between the Structure and Optical Band Gap in Gd a-Si:H Films

Published online by Cambridge University Press:  25 February 2011

H. Meiling
Affiliation:
Department of Atomic and Interface Physics, University of Utrecht, P.O.Box 80000, NL-3508 TA Utrecht, The Netherlands
M. J. Van Den Boogaard
Affiliation:
Department of Atomic and Interface Physics, University of Utrecht, P.O.Box 80000, NL-3508 TA Utrecht, The Netherlands
R.E.I. Schropp
Affiliation:
Department of Atomic and Interface Physics, University of Utrecht, P.O.Box 80000, NL-3508 TA Utrecht, The Netherlands
J. Bezemer
Affiliation:
Department of Atomic and Interface Physics, University of Utrecht, P.O.Box 80000, NL-3508 TA Utrecht, The Netherlands
W.F. Van der Weg
Affiliation:
Department of Atomic and Interface Physics, University of Utrecht, P.O.Box 80000, NL-3508 TA Utrecht, The Netherlands
Get access

Abstract

The influence of diluting SiH4 with H2 on the optical and structural properties of a-Si:H has been investigated. The major effects of the dilution are a pronounced decrease of the amount of (Si-H2)n-chains, an increase of the macroscopic density, and a decrease of the total amount of incorporated hydrogen in the films. Different models for the structure as a function of the hydrogen concentration are deduced. We also present new data on the dependence of the optical band gap Eg on the hydrogen concentration and density of the films. An important result from this work is that Eg appears to correlate with the distance between the silicon atoms, rather than with the overall hydrogen concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chaudhuri, P., Ray, S., Barua, A.K., Thin Solid Films 113, 261 (1984).Google Scholar
2. Vanier, P.E., Kampas, F.J., Corderman, R.R., Rajeswaran, G., J. Appl. Phys. 56 (6), 1812 (1984).Google Scholar
3. Shirafuji, J., Nagata, S., Kuwagaki, M., J. Appl. Phys. 58 (9), 3661 (1985).Google Scholar
4. Bhattacharya, E. and Mahan, A.H., Appl. Phys. Lett. 52 (19), 1587 (1988).Google Scholar
5. Lee, S.M., Jones, S.J., Li, Y.-M., Turner, W.A., Paul, W., Philos. Mag. B 60 (4), 547 (1989).Google Scholar
6. Kruzelecky, R.V., Racansky, D., Zukotynski, S., Perz, J.M., J. Non-Cryst. Solids 99, 89 (1988).Google Scholar
7. van den Heuvel, J.C., PhD thesis, University of Delft, the Netherlands, 1989.Google Scholar
8. Ley, L., in Hydrogenated Amorphous Silicon II, edited by Joannopoulos, J.D. and Lucovsky, G. (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984), p. 61.Google Scholar
9. Meiling, H., Lenting, W., Bezemer, J., van der Weg, W.F., presented at the 21st Chelsea Meeting on Amorphous and Liquid Semiconductors, London, United Kingdom, 1989 (to be published in Philos. Mag. B).Google Scholar
10. Brodsky, M.H., Cardona, M., Cuomo, J.J., Phys. Rev. B 16. (8), 3556 (1977).Google Scholar
11. Wagner, H. and Beyer, W., Solid State Comm. 48. (7), 585 (1983).Google Scholar
12. Klazes, R.H., van den Broek, M.H.L.M., Bezemer, J., Radelaar, S., Philos. Mag. B 45. (4), 377 (1982).Google Scholar
13. Pruppers, M.J.M., PhD thesis, University of Utrecht, the Netherlands, 1988.Google Scholar
14. Maessen, K.M.H., Pruppers, M.J.M., Habraken, F.H.P.M., Bezemer, J., and van der Weg, W.F. in Amorphous Silicon Semiconductors—Pure and Hydrogenated, edited by Madan, A., Thompson, M., Adler, D., and Hamakawa, Y. (Mater. Res. Soc. Proc. 95, Pittsburgh, PA 1987) pp. 201205.Google Scholar
15. Crandall, R.S., Solar Cells 21, 237 (1988).Google Scholar
16. Reimer, J.A., Vaughan, R.W., Knights, J.C., Phys. Rev. B 24 (6), 3360 (1981).Google Scholar