Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T15:58:38.335Z Has data issue: false hasContentIssue false

Hydrogen Diffusion in Zr-Cu-Ni-Al Metallic Glasses

Published online by Cambridge University Press:  26 February 2011

Tomaz Apih
Affiliation:
J. Stefan Institute, University of Ljubljana, SI-1000 Ljubljana, Slovenia
Lioba Jastrow
Affiliation:
Dept. Biochem. & Chem. Eng., University of Dortmund, D-44221 Dortmund, Germany
Lyudmila Lyubenova
Affiliation:
Dept. Biochem. & Chem. Eng., University of Dortmund, D-44221 Dortmund, Germany
Janez Dolinšek
Affiliation:
J. Stefan Institute, University of Ljubljana, SI-1000 Ljubljana, Slovenia
Daniela Zander
Affiliation:
Dept. Biochem. & Chem. Eng., University of Dortmund, D-44221 Dortmund, Germany
Uwe Köster
Affiliation:
Dept. Biochem. & Chem. Eng., University of Dortmund, D-44221 Dortmund, Germany
Get access

Abstract

Zr-based metallic glasses are known to absorb high amounts of hydrogen, but exhibiting less severe embrittlement than their crystalline counterparts; therefore, they might be useful for hydrogen storage application. In order to understand kinetics of hydrogen absorption and desorption in more detail, data on hydrogen diffusion are necessary. The aim of this paper is to present hydrogen diffusivities in melt-spun amorphous Zr69.5Cu12Ni11Al7.5 alloys.

Hydrogen charging was performed electrochemically in a 2:1 glycerin-phosphoric acid electrolyte. Hydrogen contents were measured by a microbalance with accuracy of ±1 μg as well as by LECO. Diffusivities of hydrogen atoms were measured at different temperatures by the technique of Nuclear Magnetic Resonance (NMR) diffusion in a static fringe field of a superconducting magnet. The diffusion of hydrogen nuclei in an inhomogeneous magnetic field is accompanied by the change of its NMR resonance frequency, which produces motional destruction of the spin echo signal. The analysis of the echo damping allows a model-independent determination of the hydrogen self-diffusion constant, with the low limit of sensitivity D>10−10 cm2/s.

Within the temperature interval between room temperature and 420 K diffusivities in the range between 4×10−8 and 1.2×10−9 cm2/s were observed. The Arrhenius-type temperature dependence indicate a simple classical over-barrier-hopping hydrogen diffusion; the activation energy increases slightly with the hydrogen content. Whereas in a number of metallic glasses hydrogen diffusion is known to increase with the hydrogen content, in Zr69.5Ni12Cu11Al7.5 the opposite effect was observed, at least for hydrogen contents between H/M = 0.2 and 1.2. The results will be compared with other measurements known for Zr-based metallic glasses (e.g., Zr-Ni) and discussed in detail, e.g. in regard to the density of the glass.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Inoue, A., Acta Mater. 48 (2000), 279;Google Scholar
[2] Zander, D., Tal-Gutelmacher, E., Jastrow, L., Köster, U., Eliezer, D., J. Alloys Compds. 356–356 (2003), 654;Google Scholar
[3] Berry, B.S., Prichet, W.C., IBM Research Report RC 13145, Yorktown Heights 1987;Google Scholar
[4] Berry, B.S., Prichet, W.C., J. Physique 46 (1985), C10, 457;Google Scholar
[5] Zander, D., Wasserstoff in metastabilen Zr-Cu-Ni-Al Legierungen, Ph.D. thesis, Dortmund 2001 Verlag, Berlin 2001;Google Scholar
[6] Kimmich, et al., J. Magn. Reson. 91 (1991), 136;Google Scholar
[7] Menzel, D., Niklas, A., Köster, U., Mater. Sci. Eng. A133 (1991), 312;Google Scholar
[8] Aubertin, F., Campbell, S.J., Pope, J.M., Gonser, U., J. Less-Common Metals 129 (1987), 297;Google Scholar
[9] Kieninger, W., Löslichkeit und Diffusion von Wasserstoff in amorphen Ni-Zr- und Ni-Ti-Legierungen, Ph.D. thesis, Stuttgart 1989;Google Scholar
[10] Stolz, U., Nagorny, U., Kirchheim, R., Scripta Met. 18 (1984), 347.Google Scholar