Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T22:51:46.154Z Has data issue: false hasContentIssue false

Hydrogen Diffusion in Quasicrystalline ZrCuNiA1

Published online by Cambridge University Press:  01 February 2011

T. Apih
Affiliation:
J. Stefan Institute, University of Ljubljana, Jamova 39, SI-1000 Ljubljana, Slovenia
M. Klanjsek
Affiliation:
J. Stefan Institute, University of Ljubljana, Jamova 39, SI-1000 Ljubljana, Slovenia
Varsha Khare
Affiliation:
J. Stefan Institute, University of Ljubljana, Jamova 39, SI-1000 Ljubljana, Slovenia
P. Jeglic
Affiliation:
J. Stefan Institute, University of Ljubljana, Jamova 39, SI-1000 Ljubljana, Slovenia
J. Dolinsek
Affiliation:
J. Stefan Institute, University of Ljubljana, Jamova 39, SI-1000 Ljubljana, Slovenia
Get access

Abstract

The hydrogen diffusion constant D in the hydrogenated quasicrystalline alloy ZrCuNiAl has been determined using the technique of NMR diffusion in a static fringe field of a superconducting magnet. The diffusion constant of partially quasicrystalline Zr69.5Cu12Ni11Al7.5 exhibits a significant decrease with increasing hydrogen-to-metal ratio H/M, owing to creation of defects in the lattice during hydrogen loading, which dominates over the site-blocking effect. The actual alloy structure—the amorphous, icosahedral or approximant—appears to be less important for the hydrogen diffusivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Völkl, J. and Alefeld, G., in Diffusion in Solids, Recent Developments, Eds. Nowick, A. S. and Burton, J. J. (Academic, New York, 1975), p. 231.Google Scholar
2. Völkl, J. and Alefeld, G., in Hydrogen in Metals I – Basic Properties, Eds. Alefeld, G. and Völkl, J. (Springer, Berlin, 1978), p. 321.Google Scholar
3. Bowman, R. C. Jr, in Metal Hydrides, Ed. Bambakidis, G., NATO ASI Series B, Vol. 76 (Plenum, New York, 1981), p. 109.Google Scholar
4. Stejskal, E. O. and Tanner, J. E., J. Chem. Phys. 42, 288 (1965).Google Scholar
5. Züchner, H., Barlag, H., Majer, G., J. Alloys and Compounds 330–332, 448 (2002).Google Scholar
6. Kimmich, R., Unrath, W., Schnur, G., Rommel, E., J. Magn. Reson. 91, 136 (1991).Google Scholar
7. Chang, I., Fujara, F., Geil, B., Hinze, G., Sillescu, H., Toelle, A., J. Non-Cryst. Solids 172–174, 674 (1994).Google Scholar
8. Köster, U., Meinhardt, J., Roos, S., Liebertz, H., Appl. Phys. Lett. 69, 179 (1996).Google Scholar
9. Zander, D., Tal-Gutelmacher, E., Jastrow, L., Köster, U., Eliezer, D., J. Alloys and Compounds 356, 654 (2003).Google Scholar
10. Zander, D., Leptien, H., Köster, U., Eliaz, N., Eliezer, D., J. Non-Cryst. Solids 250–252, 893 (1999).Google Scholar
11. Zander, D., Köster, U., Eliaz, N., Eliezer, D., Plachke, D., Mat. Res. Soc. Symp. Proc. Vol. 553, Eds. Dubois, J. M., Thiel, P. A., Tsai, A. P., Urban, K. (Materials Research Society, Warrendale, 1999), p. 49.Google Scholar
12. Zander, D., Köster, U., Khare, V., Mat. Res. Soc. Symp. Proc. Vol. 643, Eds. Belin-Ferré, E., Thiel, P. A., Tsai, A. P., Urban, K. (Materials Research Society, Warrendale, 2001), p. K2.2.1.Google Scholar
13. Viano, A. M., Stroud, R. M., Gibbons, P. C., McDowell, A. F., Conradi, M. S., Kelton, K. F., Phys. Rev. B 51, 12026 (1995).Google Scholar
14. Jeglič, P., Lebar, A., Apih, T., Dolinšek, J., J. Magn. Reson. 150, 39 (2001).Google Scholar