Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T03:07:19.073Z Has data issue: false hasContentIssue false

Hydrogen Diffusion in n-GaAs:Si Under Hydrostatic Pressure

Published online by Cambridge University Press:  26 February 2011

B. Machayekhi
Affiliation:
Laboratoire de Physique des Solides de Bellevue, CNRS, 1 place Aristide Briand, 92195 Meudon Cedex, (France)
J. Chevallier
Affiliation:
Laboratoire de Physique des Solides de Bellevue, CNRS, 1 place Aristide Briand, 92195 Meudon Cedex, (France)
B. Theys
Affiliation:
Laboratoire de Physique des Solides de Bellevue, CNRS, 1 place Aristide Briand, 92195 Meudon Cedex, (France)
J. M. Besson
Affiliation:
Physique des Milieux Condensés, URA 782, Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, (France)
G. Weill
Affiliation:
Physique des Milieux Condensés, URA 782, Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, (France)
G. Syfosse
Affiliation:
Département des Hautes Pressions, Université Pierre et Marie Curie, 4 place Jussieu, 75005 PARIS, (France)
Get access

Abstract

It has recently been shown that deuterium diffusion experiments can provide information on the deepening of the hydrogen acceptor level in the band gap of AlxGa1-xAs alloys with increasing x. In the present work, we report on the influence of hydrostatic pressure on deuterium diffusion in n-GaAs:Si. SIMS analysis reveals that the deuterium profiles in n-GaAs:Si are sensitive to hydrostatic pressure: the diffusion depth decreases and a plateau appears in the diffusion profile as the pressure is applied. The results are interpreted in terms of an increasing amount of the H- species as pressure is applied. This increase is mainly attributed to a deepening of the H acceptor level with respect to the bottom of the Γ conduction band of GaAs. Qualitatively, this effect is similar to the deepening of the H acceptor level in AlxGa1-xAs alloys as x increases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chevallier, J., Dautremont-Smith, W.C., Tu, C.W. and Pearton, S.J., Appl. Phys. Lett. 47, 108 (1985)Google Scholar
2. Nabity, J.C., Stavola, M., Lopata, J., Dautremont-Smith, W.C., Tu, C.W. and Pearton, S.J., Appl. Phys. Lett. 50, 921 (1987)Google Scholar
3. Mostefaoui, R., Chevallier, J., Jalil, A., Pesant, J.C., Tu, C.W. and Kopf, R.F., J. Appl. Phys. 64, 207 (1988)Google Scholar
4. Pajot, B., Newman, R.C., Murray, R., Jalil, A., Chevallier, J. and Azoulay, R., Phys. Rev. B 37, 4188 (1988)Google Scholar
5. Pajot, B., Inst. Phys. Conf. Ser. 95, 437 (1989)Google Scholar
6. Roos, G., Johnson, N.M., Herring, C. and Harris, J.S. Jr, Mater. Sci. Forum 83–87, 605 (1992)Google Scholar
7. Chevallier, J., Machayekhi, B., Grattepain, C.M., Rahbi, R. and Theys, B., Phys. Rev. B 45, 8803 (1992)Google Scholar
8. Machayekhi, B., Rahbi, R., Theys, B., Miloche, M. and Chevallier, J., Mater. Sci. Forum 143–147, 951 (1994)Google Scholar
9. Rahbi, R., Mathiot, D., Chevallier, J., Grattepain, C. and Razeghi, M., Physica B 170, 135 (1991)Google Scholar
10. Caglio, N., Constant, E., Pesant, J.C. and Chevallier, J., J. Appl. Phys. 69, 1345 (1991)Google Scholar