Published online by Cambridge University Press: 26 February 2011
We report studies of passivation of the gold center in silicon by hydrogen and lithium using deep level transient spectroscopy (DLTS), capacitance voltage (CV) profiling and secondary ion mass spectroscopy (SIMS). Both lithium and hydrogen are able to remove the electrical activity of the gold center from the silicon band gap but the passivation mechanisms are different. In the case of lithium the passivation is most likely due to a Coulomb attraction between lithium donors Li+ and gold acceptors Au−. No complex formation is observed between Li+ and Au0. In contrast, hydrogen is able to passivate the gold center without the need of opposite charge states of the species involved. Two Au-H complexes are observed, one (G) electrically active, and another (PA) passive. Based on the annealing kinetics of these complexes we propose that the active complex is a Au-H pair and that the passive complex contains two H atoms (Au-H2).