Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T09:51:24.913Z Has data issue: false hasContentIssue false

Hydrogen adsorption calculations in expanded graphite and amorphous carbons

Published online by Cambridge University Press:  31 January 2011

Lujian Peng
Affiliation:
[email protected], University of Tennessee, Department of Material Science and Engineering, Knoxville, Tennessee, United States
James Robert Morris
Affiliation:
[email protected], Oak Ridge National Laboratory, Materials Sciences and Technology Division, Oak Ridge, Tennessee, United States
Get access

Abstract

This paper uses an efficient and accurate approach to estimate the hydrogen physical adsorption in various carbon structures. By comparing with previous Grand Canonical Monte Carlo (GCMC) and other methods on expanded graphite, the introduced method is shown to be accurate, but the calculation is much faster and more intuitive. Our preliminary results in amorphous carbons show high hydrogen uptake close to 0.8% at 300 K and moderate pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zhou, L. Renewable and Sustainable Energy Reviews 9, 395 (2005).Google Scholar
2. Anson, A. et al. , Carbon 42, 1243 (2004).Google Scholar
3. Zhao, X. B. Xiao, B. Fletcher, A. J. and Thomas, K. M. J. Phys. Chem. B109, 8880 (2005).Google Scholar
4. Zhao, X. B. Villar-Rodil, S., Fletcher, A. J. and Thomas, K. M. Journal of Physical Chemistry B110, 9947 (2006).Google Scholar
5. Hong, S. E. et al. , Catal. Today 120, 413 (2007).Google Scholar
6. Kojima, Y. et al. , J. Alloys Compd. 421, 204 (2006).Google Scholar
7. Hirscher, M. and Panella, B. J. Alloys Compd. 404, 399 (2005).Google Scholar
8. Wang, Q. and Johnson, J. K. J. Chem. Phys. 110, 577 (1999).Google Scholar
9. Guay, P. Stansfield, B. L. and Rochefort, A. Carbon 42, 2187 (2004).Google Scholar
10. Patchkovskii, S. et al. , Proc. Natl. Acad. Sci. U. S. A. 102, 10439 (2005).Google Scholar
11. Aga, R. S. Fu, C. L. Krcmar, M. and Morris, J. R. Phys. Rev. B76, 165404 (2007).Google Scholar
12. Bhatia, S. K. and Myers, A. L. Langmuir 22, 1688 (2006).Google Scholar
13. Cabria, I. Lopez, M. J. and Alonso, J. A. Carbon 45, 2649 (2007).Google Scholar
14. Cabria, I. Lopez, M. J. and Alonso, J. A. Phys. Rev. B78 (2008).Google Scholar
15. Valladares, R. M. Valladares, A. Calles, A. G. and Valladares, A. A. Mater. Res. Soc. Symp. Proc. 1042, 1042–S03 (2008).Google Scholar
16. Ding, F. Lin, Y. Krasnov, P. O. and Yakobson, B. I. Journal of Chemical Physics 127, 164703 (2007).Google Scholar
17. Schuth, F. Sing, K. and Weitkamp, J. Handbook of Porous Solids (Wiley-VCH, Weinheim, 2002).Google Scholar
18. Mills, R. L. Liebenberg, D. H. Bronson, J. C. and Schmidt, L. C. J. Chem. Phys. 66, 3078 (1977).Google Scholar
19. Bhat, V. V. Contescu, C. I. Gallego, N. C. and Baker, F. S. Carbon, doi:10.1016/j.carbon.2009.12.001 (2009).Google Scholar
20. Tersoff, J. Phys. Rev. Lett. 61, 2879 (1988).Google Scholar
21. Jorda-Beneyto, M. et al. , Carbon 45, 293 (2007).Google Scholar