Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T02:04:17.537Z Has data issue: false hasContentIssue false

Hydrogen Absorption and Desorption by Magnesium-Based Nano-Composite Materials

Published online by Cambridge University Press:  01 February 2011

Yoshitsugu Kojima
Affiliation:
Toyota Central R& D Labs., Inc., Nagakute, Aichi, 480–1192 JAPAN
Yasuaki Kawai
Affiliation:
Toyota Central R& D Labs., Inc., Nagakute, Aichi, 480–1192 JAPAN
Tetsuya Haga
Affiliation:
Toyota Central R& D Labs., Inc., Nagakute, Aichi, 480–1192 JAPAN
Get access

Abstract

MgH2 was mechanically milled with nano-Ni (nano-Ni/Al2O3/C) and Ni catalysts (Ni), yielding Mg-based nano-composite materials. X-ray and TEM measurements revealed that nano-Ni particles, which are 6–20 nm size, were dispersed in the MgH2 matrix. The nano-composite material with nano-Ni/Al2O3/C showed excellent properties as compared to that with Ni, a ball-milled MgH2 and the mixture of MgH2 and nano-Ni/Al2O3/C in terms of the H2 desorption and absorption. The nano-composite material with nano-Ni/Al2O3/C desorbed H2 of 4.9–5.8 wt% at 423–473 K, while the mixture could not desorb H2 at the temperature. The H2 absorption capacity at 9 MPa and room temperature in 6 hr. increased from below 0.1 wt% for the mixture to 5.0 wt % for the nano-composite material, approaching a maximum of 6.5 wt% in 70 hr. The catalyst activity was improved with decreasing Ni size. The improved kinetics is indicated by the small activation barrier, the short diffusion path length and the high driving force.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S. and Heben, M. J., Nature, 386, 377 (1997).Google Scholar
2. Chahine, R. and Bose, T. K., Int. J. Hydrogen Energy, 19, 161 (1994).Google Scholar
3. Kojima, Y. and Suzuki, N., Appl. Phys. Lett., 84, 4113 (2004).Google Scholar
4. Sandrock, G., Report, Final, Contract N00014–97–M-0001, SunaTech, Inc., Ringwood, NJ, July 24 (1997).Google Scholar
5. Tamura, T., Tominaga, Y., Matumoto, K., Fuda, T., Kuriiwa, T., Kamegawa, A., Takamura, H. and Okada, M., J. Alloys Compd., 330–332, 522 (2002).Google Scholar
6. Amendola, S. C., Sharp-Goldman, S. L., Janjua, M. S., Kelly, M. T., Petillo, P. J. and Binder, M., J. Power Sources, 85, 186 (2000).Google Scholar
7. Kojima, Y., Suzuki, K., Fukumoto, K., Sasaki, M., Yamamoto, T., Kawai, Y. and Hayashi, H., Int. J. Hydroge Energy, 27, 1029 (2002).Google Scholar
8. Bogdanović, B. and Schwickardi, M., J. Alloys Compd., 253–254, 1 (1997).Google Scholar
9. Luo, W. and Gross, K. J., J. Alloys Compd., in press.Google Scholar
10. Chen, P., Xiong, Z., Luo, J., Lin, J. and Tan, K. L., Nature, 420, 302 (2002).Google Scholar
11. Ichikawa, T., Isobe, S., Hanada, N. and Fujii, H., J. Alloys Compd., 365, 271 (2004).Google Scholar
12. Kojima, Y. and Kawai, Y., Chemical Commun. 2210 (2004).Google Scholar
13. Liang, G., Huot, J., Boily, S., Van Neste, A. and Schulz, R., J. Alloys Compd., 292, 247 (1999).Google Scholar
14. Barkhordarian, G., Klassen, T. and Bormann, R., J. Alloys Compd., 364, 242 (2004).Google Scholar
15. Newson, E., Haueter, Th., Hottinger, P., Von Roth, F., Scherer, G. W. H. and Schucan, Th. H., Int. J. Hydrogen Energy, 23, 905 (1998).Google Scholar
16. Li, Y., Chen, J. and Chang, L., Appl. Catal. A: General 163, 45 (1997).Google Scholar
17. “Powder Diffraction File,” Database Manager T. M. Kahmer, Editor-in-Chief W. F. McClune, Editor of Calculated Patterns S. N. Kabekkodu, Staff Scientist H. E. Clark, International Center for Diffraction Data (JCPDS), Pennsylvania USA (2001).Google Scholar
18. Ron, M., J. Alloys Compd., 283, 178 (1999).Google Scholar
19. Renner, J. and Grabke, H. J., Z. Metallkd, 67, 639 (1978).Google Scholar
20. Huot, J., Liang, G., Boily, S., Van Neste, A. and Schulz, R, J. Alloys Compd., 293–295, 495 (1999).Google Scholar
21. Yamaguchi, M., Akiba, E. in: Cahn, R. W., Hassen, P., Kramer, E. J. (ed.). Materials Science and Technology, vol. 3B, New York: VCH 1994, P.333.Google Scholar
22. Stampfer, J. F. Jr., Holley, C.E. Jr, and Suttle, J. F., J. Amer. Chem. Soc. 82 3504 (1960).Google Scholar