Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T08:12:13.570Z Has data issue: false hasContentIssue false

Hydrocarbon Reactions in Carbon Nanotubes: Pyrolysis

Published online by Cambridge University Press:  21 March 2011

Steven J. Stuart
Affiliation:
Department of Chemistry, Clemson University, Clemson, SC 29634-0973, USA.
Brad M. Dickson
Affiliation:
Department of Chemistry, Clemson University, Clemson, SC 29634-0973, USA.
Donald W. Noid
Affiliation:
Department of Chemistry, Clemson University, Clemson, SC 29634-0973, USA.
Bobby G. Sumpter
Affiliation:
Chemical and Analytical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
Get access

Abstract

Molecular dynamics simulations have been used to study the pyrolysis of eicosane (C2042 both in the gas phase and when confined to the interior of a (7,7) carbon nanotube. A reactive bond-order potential was used to model the thermal decomposition of covalent bonds. The unimolecular dissociation is first-order in both cases. The decomposition kinetics demonstrate Arrhenius temperature dependence, with similar activation barriers in both geometries. The decomposition rate is slower by approximately 30% in the confined system. This rate decrease is observed to be a result of recombination reactions due to collisions with the nanotube wall.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pederson, M. R. and Broughton, J. Q., Phys. Rev. Lett., 69, 2689 (1992).Google Scholar
2.P. Ajayan, M. and Iijima, S., Nature, 361, 333 (1993).Google Scholar
3. Dujardin, E., Ebbesen, T. W., Hiura, H., and Tankgaki, K., Science, 265, 1850 (1994).Google Scholar
4. Ugarte, D., Châtelain, A., and Heer, W. A. de, Science, 274, 1897 (1996).Google Scholar
5. Terrones, M., Grobert, N., Hsu, W. K., Zhu, Y. Q., Hu, W. B., Terrones, H., Hare, J. P., Kroto, H. W., and Walton, D.R. M., MRS Bull., 24 (8), 43 (1999).Google Scholar
6. Tsang, S. C., Chen, Y. K., Harris, P. J. F., and Green, M. L. H., Nature, 372, 159 (1991).Google Scholar
7. Stuart, S. J., Tutein, A. B., and Harrison, J. A., J. Chem. Phys., 112, 6472 (2000).Google Scholar
8. Brenner, D. W., Phys. Rev. B, 42, 9458 (1990); 46; 1948 (1992).Google Scholar
9. Brenner, D. W., Harrison, J. A., White, C. T., and Colton, R. J., Thin Solid Films, 206, 20 (1991).Google Scholar
10. Safarik, I. and Strausz, O. P., Res. Chem. Intermediat., 22, 275 (1996).Google Scholar
11. Xiao, Y. T., Longo, J. M., Hieshima, G. B., and Hill, R. J., Ind. Eng. Chem. Res., 36, 4033 (1997).Google Scholar