Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T16:00:26.928Z Has data issue: false hasContentIssue false

HREM of Gold Clusters on MgO Smoke Particles

Published online by Cambridge University Press:  21 February 2011

P. M Ajayan
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
L. D Marks
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
Get access

Abstract

We present here experimental results using High Resolution Electron Microscopy (HREM), of the structure and behavior of gold clusters on magnesium oxide smoke particles. These indicate that there is a strong interaction between the particle and the substrate, and under electron beam irradiation the particle can immerse completely into the substrate. Various other observations, for instance, motion of twin boundaries, volume shrinkage and surface diffusion, faceting etc., confirm the basic structural instability of small particles. Initial results also indicate that the stability of the cluster depends on particle size, the irradiation flux and the nature of the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ino, S., J. Phys. Soc. Japan, 25 941 (1969).CrossRefGoogle Scholar
2. Yagi, K., Takayanagi, K., Kobayashi, K. and Honjo, G., J. Cryst. Growth, 28, 117 (1975).CrossRefGoogle Scholar
3. Marks, L. D. and Smith, D. J., J. Cryst. Growth, 54, 425 (1981)CrossRefGoogle Scholar
4. Halicioglu, T. and Bauschlicher, C. W., Rep. Prog. Phys., 51, 883 (1988).CrossRefGoogle Scholar
5. Iijima, S. and Ichihashi, T., Phys. Rev. Lett., 56, 616 (1986).CrossRefGoogle Scholar
6. Smith, D. J., Petford-Long, A. K.,. Wallenberg, R. and Bovin, J. O., Science, 233, 872 (1986).CrossRefGoogle ScholarPubMed
7. Malm, J. O., Bovin, J. O., Petford-Long, A. K., Smith, J., Schmid, G. and Klein, N., Angew. Chem., 27, 555 (1988).CrossRefGoogle Scholar
8. Ajayan, P. M. and Marks, L. D., Phys. Rev. Lett., 60, 585 (1988).CrossRefGoogle Scholar
9. Tauster, S. J., Fung, S. C. and Garten, R. L., J. Am. Chem. Soc., 100, 170 (1978).CrossRefGoogle Scholar
10. Spencer, M. S., J. Catalysis, 93 216 (1985).CrossRefGoogle Scholar
11. Takatani, U. S. and Chung, Y. W., J. Catalysis, 90, 75 (1984).CrossRefGoogle Scholar
12. Sundquist, A. E., Acta Met., 12, 67 (1964).CrossRefGoogle Scholar
13. Pillar, R. M. and Nuttig, J., Phil. Mag., 16, 181 (1967).CrossRefGoogle Scholar
14. Winterbottom, W. L.., Acta. Met., 15, 303 (1967).CrossRefGoogle Scholar
15. Teo, E. K. and Keating, K., J. Am. Chem. Soc., 106, 2224 (1984).CrossRefGoogle Scholar
16. Marks, L. D., Hong, M. C., Zhang, H. and Teo, B. K., MRS Symp. Proc., 111, 231 (1988).Google Scholar
17. Flueli, M. and Borel, J. P. (1988), J. Cryst. Growth, 91, 67 (1988).CrossRefGoogle Scholar
18. 3. Heyraud, C. and Metois, J. J., Acta. Met., 28 1789 (1980).CrossRefGoogle Scholar
19. Gale, B. and Hale, K. F., Brit. J. Appl. Phys., 12, 115 (1961).CrossRefGoogle Scholar
20. Williams, P., Appl. Dhys. Lett., 50, 1760 (1987).CrossRefGoogle Scholar
21. Buxbaum, A. and Marks, L. D., Proc. 11th Int. Cong. on EM, Kyoto, 1441 (1986).Google Scholar
22. AJayan, P. M. and Marks, L. D., Nature, Submitted.Google Scholar
23. Halicioglu, T., Surf. Sci., 197, L233 (1988).CrossRefGoogle Scholar