Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T03:42:59.447Z Has data issue: false hasContentIssue false

How to Simulate the Microstructure Induced by a Nuclear Reactor with an Ion Beam Facility : DART

Published online by Cambridge University Press:  31 January 2011

Laurence Luneville
Affiliation:
David Simeone
Affiliation:
[email protected], CEA, DEN/DANS/DMN/SRMA/LA2M-MFE, Gif sur Yvette, 91191, France
Gianguido Baldinozzi
Affiliation:
[email protected], CNRS, SPMS MFE, Châtenay-Malabry, France
Dominique Gosset
Affiliation:
[email protected], CEA, DMN/SRMA/LA2M, CEA Saclay, bat. 453, Gif/Yvette, 91191, France
yves serruys
Affiliation:
[email protected], CEA, DEN/DANS/DMN/SRMA/LA2M-MFE, Gif sur Yvette, 91191, France
Get access

Abstract

Even if the Binary Collision Approximation does not take into account relaxation processes at the end of the displacement cascade, the amount of displaced atoms calculated within this framework can be used to compare damages induced by different facilities like pressurized water reactors (PWR), fast breeder reactors (FBR), high temperature reactors (HTR) and ion beam facilities on a defined material. In this paper, a formalism is presented to evaluate the displacement cross-sections pointing out the effect of the anisotropy of nuclear reactions. From this formalism, the impact of fast neutrons (with a kinetic energy En superior to 1 MeV) is accurately described. This point allows calculating accurately the displacement per atom rates as well as primary and weighted recoil spectra. Such spectra provide useful information to select masses and energies of ions to perform realistic experiments in ion beam facilities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Martin, G. Bellon, P. Solid State Phys. 50, 189(1997).Google Scholar
2. Balanzat, E. Bouffard, S. Materials under Irradiation, Trans Tech. Publication (1993).Google Scholar
3. Abromeit, C. J. of Nucl. Mat. 216, 78(1994).Google Scholar
4. Bleiberg, M. and Bennet, J. Int. Conf. on Radiation Effects In Breeder Reactor Structural Materials, ASTM Scottsdale(1977).Google Scholar
5. Brager, H. and Perrin, J. Int. Conf. on Effects of Radiation on Materials, ASTM Scottsdale(1982).Google Scholar
6. Garner, F. Packan, N. and Kumar, A. Int. Conf. on Radiation Induced Changes in Microstructure, ASTM Seattle(1986).Google Scholar
7. Odette, G. J. of Nucl. Mat. 85-86,(1979).Google Scholar
8. Averback, R. J. of Nucl. Mat. 33, 108(1971).Google Scholar
9. Odette, G. Doiron, D. Nuclear technology 29, 346(1976).Google Scholar
10. Simeone, D. Hablot, O. Micalet, V. Bellon, P. Serruys, Y. J of Nucl. Mat 246, 206(1998).Google Scholar
11. Greenwood, L. Smither, R. SPECTER: Neutron Damage Calculation For Materials Irradiations, ANL/FPP/TM-187(1985).Google Scholar
12. Simeone, D. Luneville, L. Both, J. P. Euro. Phys. Let. 83, 56002(2008).Google Scholar
13. Meyerhoff, W. Elements of Nuclear Physics, Dunod (1970).Google Scholar
14. Kikuchi, K. Kawai, M. Nuclear Matter and Nuclear Reactions, North Holland (1968).Google Scholar
15. Greenwood, L. J of Nucl. Mat. 206, 25(1994).Google Scholar
16. MacLane, V. ENDF-102 Data Formats for the Evaluated Nuclear Data file ENDF-6, Cross Section Evaluation Working Group, BNL-NCS-44945-02/04-Rev(2001).Google Scholar
17.The JEFF3.0 Nuclear Data Libray, JEFF Report 19. NEA. OCDE(2000).Google Scholar
18. Simeone, D. Luneville, L. Jouanne, C. J. of Nucl. Mat 353, 89(2006).Google Scholar
19. Luneville, L. Simeone, D. Gosset, D. Nucl. Instr. Meth. B 250, 71(2006).Google Scholar
20. Klimiankou, M. Lindau, R. Möslang, A., J. of Crystal Growth 249, 381(2003).Google Scholar
21. Albermann, A. Lesueur, D. Am. Soc. for Tes. and Mat 19, 19103(1989).Google Scholar
22. Lindhard, J. Nielsen, V. Schraff, M. Kgl. Dan. Vid. Mat. Fys. Medd 36, 1(1968).Google Scholar
23. Averback, R. Rubia, T. Diaz de la, Solid State Phys. 50, 189(1997).Google Scholar
24. Monnet, I. Ph. D.(2000).Google Scholar
25. Chen, C. Sun, J. Xu, Y. J. of Nucl. Mat 283-287, 1011(2000).Google Scholar