Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T02:36:19.407Z Has data issue: false hasContentIssue false

Hot Electron Relaxation in Quantum Wells

Published online by Cambridge University Press:  26 February 2011

S. A. Lyon*
Affiliation:
Department of Electrical Engineering, Princeton University Princeton, NJ 08544, USA
Get access

Abstract

Hot electron relaxation in bulk semiconductors has been studied for several decades, but only through recent advances in crystal growth has it become possible to investigate the ther-malization of hot quasi-two-dimensional carriers in quantum wells. These same advances have opened the possibility of constructing various semiconductor devices which rely on hot electrons for their operation. We discuss experimental results on the energy relaxation of hot electrons in GaAs/AlGaAs quantum wells. The experiments make use of optical spectroscopy for determining the carrier distribution. In particular, steady-state hot photoluminescence measurements have been employed with modulation-doped quantum wells in order to minimally perturb the system by the photoexcited carriers. Both the relaxation of very energetic electrons and the cooling of a hot thermalized carrier distribution are considered. The quantum well results are compared to results from similar experiments with bulk GaAs.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENces

1. By “hot carriers” we mean electrons or holes with kinetic energies well above the average thermal energy of the lattice, kTL. Ignoring questions of semantics, we will not in general asssume that the carriers are in an equilibrium distribution, and “hot” does not imply that their distribution can be characterized by a carrier temperature.Google Scholar
2. Ridley, B. K. and Watkins, T. B., Proc. Phys. Soc. (London) 78, 293 (1961);CrossRefGoogle Scholar
Hilsum, C., Proc. IRE 50, 185 (1962).Google Scholar
3. Gunn, J. B., Solid State Commun. 1, 88 (1963).Google Scholar
4. Ruch, J. G., IEEE Trans. Electron Devices, ED–19, 652 (1972).Google Scholar
5. Hammond, R. B., Physica 134B, 475 (1985)Google Scholar
6. Shannon, J. M., IEE J. Solid State Electron Devices 3, 142 (1979);CrossRefGoogle Scholar
Shannon, J. M. and Gill, A., Electron Lett. 17, 621 (1981).Google Scholar
7. Malik, R. J., Hollis, M. A., Eastman, L. F., Woodward, D. J., Wood, C. E. C., and AuCoin, T. R., Proc. of Conference on Active Microwave Devices (Cornell University, Ithaca, NY, 1981), p. 87.Google Scholar
8. Heilblum, M., Thomas, D. C., Knoedler, C. M., and Nathan, M. I., Appl. Phys. Lett. 47, 1105, (1985).Google Scholar
9. Hayes, J. R., Levi, A. F. J., and Wiegmann, W., Electron. Lett. 20, 851 (1984).CrossRefGoogle Scholar
10. Levi, A. F. J., Hayes, J. R., Platzman, P. A., and Wiegmann, W., Phys. Rev. Lett. 55, 2071 (1985).Google Scholar
11. Heilblum, M., Nathan, M. I., Thomas, D. C., and Knoedler, C. M., Phys. Rev. Lett. 55, 2200 (1985).CrossRefGoogle Scholar
12. See for example, Lyon, S.A., The Physics of VLSI, Proceedings of the International Conference, Palo Alto, CA, edited by Knights, J.C. (AIP Conference Proceedings, No. 122) p. 8 (1984).Google Scholar
13. For a review of the properties of electrons in two-dimensional systems see Ando, T., Fowler, A. B., and Stern, F., Rev. Mod. Phys. 54, 437 (1982).Google Scholar
14. Dingle, R., Stornier, H., Gossard, A., and Wiegmann, W., Appl. Phys. Lett. 33, 665 (1978).CrossRefGoogle Scholar
15. Lyon, S. A., J. Lumin. 35, 121 (1986).Google Scholar
16. Shah, J., IEEE J. Quantum Electron. QE–33, 1728 (1986).CrossRefGoogle Scholar
17. Here we use “thermalized” to mean that the carriers are in equilibrium with one another, ie. in a Fermi-Dirac or Boltzmann distribution, but not necessarily at the lattice temperature.Google Scholar
18. Shah, J. and Leite, R. C. C., Phys. Rev. Lett. 22, 1304 (1969).Google Scholar
19. Conwell, E. M., High Field Transport in Semiconductors, Solid State Physics Suppl. 9, ed. by Seitz, F., Turnbull, D., and Ehrenreich, H., (Academic Press, New York, 1967).Google Scholar
20. Bauer, G. and Kahlert, H., Phys. Rev. B5, 566 (1972).CrossRefGoogle Scholar
21. Mooradian, A. and Wright, G. B., Solid State Commun. 4, 431 (1966).CrossRefGoogle Scholar
22. Yang, C. H., Carlson-Swindle, J. M., Lyon, S. A., and Worlock, J. M., Phys. Rev. Lett. 55, 2359 (1985).Google Scholar
23. Ridley, B. K., J. Phys. C15, 5899 (1982).Google Scholar
24. Riddoch, F. A. and Ridley, B. K., J. Phys. C16, 6971 (1983).Google Scholar
25. Shah, J., Pinczuk, A., Störnier, H. L., Gossard, A. C., and Wiegmann, W., Appl. Phys. Lett. 42, 55 (1983); 44, 322 (1984).CrossRefGoogle Scholar
26. Shah, J., Pinczuk, A., Gossard, A. C., and Wiegmann, W., Phys. Rev. Lett. 54, 2045 (1985); Physica 134B, 174 (1985).Google Scholar
27. Ryan, J. F., Taylor, R. A., Tuberfield, A. J., Maciei, A., Worlock, J. M., Gossard, A. C., and Wiegmann, W., Phys. Rev. Lett. 53, 1841 (1984);Google Scholar
Ryan, J. F., Physica 134B, 403 (1985).Google Scholar
28. Kash, K., Shah, J., Block, D., Gossard, A. C., and Wiegmann, W., Physica 134B, 189 (1985).Google Scholar
29. Leheny, R. F., Jagdeep, Shah, Fork, R. L., Shank, C.V., Migus, A., Solid State Commun. 31, 809 (1979).Google Scholar
30. von der Linde, D. and Lambrich, R., Phys. Rev. Lett. 42, 1090 (1979).Google Scholar
31. Yang, C. H. and Lyon, S. A., Physica 134B, 309 (1985).Google Scholar
32. Hess, K., Holonyak, N. Jr, Ladig, W. D., Vojak, B. A., Coleman, J. J., and Dapkus, P. D., Solid State Commun. 34, 749 (1980).Google Scholar
33. Price, P. J., Physica 134B, 164 (1985).Google Scholar
34. Yang, C. H. and Lyon, S. A., (to be published).Google Scholar
35. Lyon, S. A., Int. Conf. Superlattices, Microstructures and Microdevices, Göteborg, 1986 (to be published).Google Scholar
36. Kash, J. A., Tsang, J.C., and Hvam, J. M., Phys. Rev. Lett. 54, 2151 (1985);Google Scholar
Tsang, J. C., Kash, J. A., and Jha, S. S., Physica 134B, 184 (1985).Google Scholar
37. von der Linde, D., Kuhl, J., and Klingenberg, H., Phys. Rev. Lett. 44, 1505 (1980).Google Scholar
38. Jagdeep, Shah, Leite, R. C. C., and Scott, J. F., Solid State Commun. 8, 1089 (1970).Google Scholar
39. Mattos, J. C. V. and Leite, R. C. C., Solid State Commun. 12, 465 (1973).Google Scholar
40. Gallego Lluesma, E., Mendes, G., Arguello, C. A., and Leite, R. C. C., Solid State Commun. 14, 1195 (1974).Google Scholar
41. Riddoch, F. A. and Ridley, B. K., Physica 134B, 342 (1985).Google Scholar
42. Worlock, J. M. Proc. of the Int. Conf. Phonon Physics, eds. Kollar, J., Kroo, N., Men-yhard, N., and Siklos, T. (World Scientific Publishing, Singapore, 1985) p. 506.Google Scholar
43. Mirlin, D. N., Karlik, I.Ya., Nikitin, L. P., Reshina, I. I., and Sapega, V. F., Solid State Commun. 37, 757 (1980).CrossRefGoogle Scholar
44. Oudar, J. L., Migus, A., Hulin, D., Grillon, G., Etchpare, J., and Antonetti, N., Phys. Rev. Lett. 53, 384 (1985).CrossRefGoogle Scholar
45. Oudar, J. L., Hulin, D., Migus, A., Antonetti, A., and Alexandre, F., Phys. Rev. Lett. 55, 2074 (1985).Google Scholar
46. Knox, W. H., Hirlimann, C., Miller, D. A. B., Shah, J., Chemia, D. S. and Shank, C. V., Phys. Rev. Lett. 56, 1191 (1986).CrossRefGoogle Scholar
47. Knox, W. H., Downer, M. C., Fork, R. L., and Shank, C. V., Opt. Lett. 9, 552 (1986).Google Scholar
48. Yang, C. H. and Lyon, S. A., Physica 134B, 305 (1985).Google Scholar
49. Yang, C. H., and Lyon, S. A., Proc. 1986 Conf. Ultrafast Phenomena V, eds. Fleming, G.R. and Siegman, A.E. (Springer Verlag, 1986) p. 227.Google Scholar
50. Mott, N.F. and Davis, E.A., Electronic Processes in Non-crystalline Solids, 2nd ed., (Clarendon, Oxford, 1979) p. 266.Google Scholar
51. Auston, D. H., McAfee, S., Shank, C. V., Ippen, E. P., and Teschke, O., Solid State Electronics 21, 147 (1978);Google Scholar
Shank, C. V., Auston, D. H., Ippen, E. P., and Teschke, O., Solid State Commun. 26, 567 (1978).Google Scholar
52. Tang, C. L. and Erskine, D. J., Phys. Rev. Lett. 51, 840 (1983);Google Scholar
Erskine, D. J., Taylor, A. J., and Tang, C. L., Appl. Phys. Lett. 45, 54 (1984).CrossRefGoogle Scholar