Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T04:02:20.462Z Has data issue: false hasContentIssue false

Hopping transport in doped co-deposited mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

Published online by Cambridge University Press:  20 June 2011

L. R. Wienkes
Affiliation:
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
C. Blackwell
Affiliation:
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
J. Kakalios
Affiliation:
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

Studies of the electronic transport properties of n-type doped hydrogenated amorphous/nanocrystalline silicon (a/nc-Si:H) films deposited in a dual-plasma co-deposition reactor are described. For these doped a/nc-Si:H, the conductivity increases monotonically for increasing crystal fractions up to 60% and displays marked deviations from a simple thermally activated temperature dependence. Analysis of the temperature dependence of the activation energy for these films finds that the dark conductivity is best described by a power-law temperature dependence, σ = σo (T/To)n where n = 1 – 4, suggesting multiphonon hopping as the main transport mechanism. These results suggest that electronic transport in mixed-phase films occurs through the a-Si:H matrix at lower nanocrystal concentrations and shifts to hopping conduction between clusters of nanocrystals at higher nanocrystal densities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Butte, R., Meaudre, M., Meaudre, R., Vignoli, S., Longeaud, C., Kleider, J. P., and Cabarrocas, P. R., Phil. Mag. B 79, 1079 (1999).10.1080/13642819908214860Google Scholar
2. Lubianiker, Y., Cohen, J. D., Jin, H., and Abelson, J. R., Phys. Rev. B 60, 4434 (1999).10.1103/PhysRevB.60.4434Google Scholar
3. Kamei, T., Stradins, P., and Matsuda, A., Appl. Phys. Lett. 74, 1707 (1999).10.1063/1.123662Google Scholar
4. Fontcuberta i Morral, A., Hofmeister, H., and Roca i Cabarrocas, P., J. Non-Crystal. Solids 299-302, 284 (2002).10.1016/S0022-3093(01)01007-9Google Scholar
5. Yang, J., Lord, K., Guha, S., and Ovshinski, S. R., in Amorphous and Heterogeneous Silicon Thin Films, edited by Collins, R. W., Branz, H. M., Stutzmann, M., Guha, S, Okamoto, H. (Mater. Res. Soc. Symp. Proc. 609, Pittsburgh, PA, 2000), pp.A15.4.1.Google Scholar
6. Collins, R. W., Ferlauto, A. S., Ferreira, G. M., Koh, J., Chen, C., Koval, R. J., Pearce, J. M., Wronski, C. R., Al-Jassim, M. M., and Jones, K. M, in Amorphous and Nanocrystalline Silicon-Based Films, edited by Abelson, J. R., and Ganguly, G., and Matsumura, H., and Robertson, J., and Schiff, E. A. (Mater. Res. Soc. Symp. Proc. 762, Pittsburgh, PA, 2003), pp.A.10.1.Google Scholar
7. Ferlauto, A. S., Ferreira, G. M., Koveal, R. J., Pearce, J. M., Wronski, C. R., Collins, R. W., Al-Jassima, M. M., and , K. M. Jones, in Amorphous and Nanocrystalline Silicon-Based Films, edited by Abelson, J. R., Ganguly, G., Matsumura, H., Robertson, J., and Schiff, E. A. (Mater. Res. Soc. Symp. Proc. 762, Pittsburgh, PA, 2003), pp.A5.10.Google Scholar
8. Wronski, C. R., Pearce, J. M., Koval, R. J., Niu, X., Ferlauto, A. S., Koh, J., and Collins, R. W., Mater. Res. Soc. Symp. Proc. 715, 459 (2002).10.1557/PROC-715-A13.4Google Scholar
9. Adjallah, Y., Anderson, C., Kortshagen, U., and Kakalios, J., J. Appl. Phys. 107, 043704 (2010).10.1063/1.3285416Google Scholar
10. Kakalios, J., in this Proceedings.Google Scholar
11. Tsu, R., Gonzalez-Hernandez, J., Chao, S. S., Lee, S. C., and Tanaka, K., Appl. Phys. Lett. 40, 534 (1982).10.1063/1.93133Google Scholar
12. Voutsas, A. T., Hatalis, M. K., Boyce, J., and Chiang, A., J. Appl. Phys. 78, 6999 (1995).10.1063/1.360468Google Scholar
13. Golubev, V., Davydov, V., Medvedev, A., Pevtsov, A., and Feoktistov, N., Phys. Solid State 39, 1197 (1997).10.1134/1.1130042Google Scholar
14. Bustarret, E., Hachicha, M. A., and Brunel, M., Appl. Phys. Lett. 52, 1675 (1988).10.1063/1.99054Google Scholar
15. Kakalios, J. and Street, R. A., Phys. Rev. B 34, 6014 (1986).10.1103/PhysRevB.34.6014Google Scholar
16. Kakalios, J. and Street, R. A., Thermal Equilibrium Effects in Doped Hydrogenated Amorphous Silicon, edited by Fritzsche, H. (World Scientific Publishing Company, 1988), p. 165.Google Scholar
17. Mott, N. F., J. Non-Crystal. Solids 1, 1 (1968).10.1016/0022-3093(68)90002-1Google Scholar
18. Efros, A. L. and Shklovskii, B. I., J. Phys. C 8, L49 (1975).10.1088/0022-3719/8/4/003Google Scholar
19. Mott, N. F. and Davis, E. A., Electronic processes in non-crystalline materials, (Oxford, Clarendon Press, Oxford, 1979).Google Scholar
20. Robertson, N. and Friedman, L., Phil. Mag. 36, 1013 (1977).10.1080/14786437708239775Google Scholar
21. Robertson, N. and Friedman, L., Phil. Mag. 33, 753 (1976).10.1080/14786437608221913Google Scholar
22. Zabrodskii, A. G. and Shlimak, I. S., Sov. Phys. Semicond. 9, 391 (1975).Google Scholar
23. Zabrodskii, A. G., Sov. Phys. Semicond. 11, 345 (1977).Google Scholar
24 Hill, R. M., Phys. Stat. Sol. (a) 35, K29(1976).10.1002/pssa.2210350151Google Scholar
25. Shklovskii, B. I. and Efros, A. L., Electronic properties of doped semiconductors (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984).10.1007/978-3-662-02403-4Google Scholar
26. Emin, D., Phys. Rev. Lett. 32, 303 (1974).10.1103/PhysRevLett.32.303Google Scholar
27. Shimakawa, K., Phil. Mag. B 60, 377 (1989).10.1080/13642818908205914Google Scholar
28. Shimakawa, K., Phys. Rev. B 39, 12933 (1989).10.1103/PhysRevB.39.12933Google Scholar
29. Shimakawa, K. and Miyake, K., Phys. Rev. B 39, 7578 (1989).10.1103/PhysRevB.39.7578Google Scholar