No CrossRef data available.
Article contents
High-throughput top-down and bottom-up processes for forming single-nanotube based architectures for 3D electronics
Published online by Cambridge University Press: 31 January 2011
Abstract
We have developed manufacturable approaches to form single, vertically aligned carbon nanotubes, where the tubes are centered precisely, and placed within a few hundred nm of 1-1.5 m deep trenches. These wafer-scale approaches were enabled by chemically amplified resists and inductively coupled Cryo-etchers for forming the 3D nanoscale architectures. The tube growth was performed using dc plasma-enhanced chemical vapor deposition (PECVD), and the materials used for the pre-fabricated 3D architectures were chemically and structurally compatible with the high temperature (700 C) PECVD synthesis of our tubes, in an ammonia and acetylene ambient. Tube characteristics were also engineered to some extent, by adjusting growth parameters, such as Ni catalyst thickness, pressure and plasma power during growth. Such scalable, high throughput top-down fabrication techniques, combined with bottom-up tube synthesis, should accelerate the development of PECVD tubes for applications such as interconnects, nano-electromechanical (NEMS), sensors or 3D electronics in general.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2009