Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T17:48:11.270Z Has data issue: false hasContentIssue false

High-Temperature SiC MOSFET Gas Sensors

Published online by Cambridge University Press:  01 February 2011

Kevin Matocha
Affiliation:
Semiconductor Technology Laboratory, GE Global Research Center One Research Circle Niskayuna, NY 12309 USA email: [email protected]
Vinayak Tilak
Affiliation:
Semiconductor Technology Laboratory, GE Global Research Center One Research Circle Niskayuna, NY 12309 USA email: [email protected]
Peter Sandvik
Affiliation:
Semiconductor Technology Laboratory, GE Global Research Center One Research Circle Niskayuna, NY 12309 USA email: [email protected]
Jesse Tucker
Affiliation:
Semiconductor Technology Laboratory, GE Global Research Center One Research Circle Niskayuna, NY 12309 USA email: [email protected]
Get access

Abstract

Due to tightening restrictions on combustion exhaust emissions, low-cost sensors are desired for monitoring NOx production in high-temperature exhaust streams. This paper reports the characterization of Silicon Carbide MOSFET NO sensors for use in combustion exhaust monitoring. SiC depletion-mode MOSFETs were fabricated using a thermally-grown silicon dioxide gate dielectric and a Pt catalytic metal gate electrode. SiC MOSFET gas sensors were characterized at temperatures as high as 525°C in an ambient of synthetic air and NO (50–200 ppm) for 30 hours with no degradation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Spetz, A.L., Tobias, P., Baranzahi, A., Mårtennson, P., Lundström, I., IEEE Trans. Elect. Devices 46, 561566 (1999).Google Scholar
2. Chen, L.-Y., Hunter, G., Neudeck, P., Knight, D., Solid-State Elect. 42, 22092214 (1998).Google Scholar
3. Spetz, A., Baranzahi, A., Tobias, P., Lundstrom, I, phys. stat. sol. (a) 162, 493511 (1997).Google Scholar
4. Schalwig, J., Kreisl, P., Ahlers, S., Müller, G., IEEE Sensors Journal 2, 394402 (2002).Google Scholar
5. Tobias, P., Golding, B., Ghosh, R.N., IEEE Sensors Journal 2, 543547 (2003).Google Scholar
6. Spetz, A.L., et al., phys. stat. sol. (a) 185, 1525 (2001).Google Scholar
7. Matocha, K. and Tilak, V., unpublished.Google Scholar
8. Baumvol, I.J.R., Ganem, J.-J., Gosset, L.G., Trimaille, I., Rigo, S., Appl. Phys. Letters 72, 29993001 (1998).Google Scholar
9. Ménil, F., Coillard, V., Lucat, C., Sens. Actuators B 67, 123 (2000).Google Scholar