Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T04:14:36.308Z Has data issue: false hasContentIssue false

High-Temperature Deformation of Uniaxially Aligned Lamellar TiAl/Ti3Al

Published online by Cambridge University Press:  10 February 2011

H. Heinrich
Affiliation:
ETH Zürich, Institute of Applied Physics, CH-8093 Zürich, Switzerland
V. Abbächerdi
Affiliation:
now: Université de Genève, Groupe de Physique Appliqudée, CH-1211 Genève, Switzerland
D. J.
Affiliation:
ETH Zürich, Institute of Applied Physics, CH-8093 Zürich, Switzerland
G. Kostorz
Affiliation:
ETH Zürich, Institute of Applied Physics, CH-8093 Zürich, Switzerland
Get access

Abstract

Uniaxially aligned polysynthetically twinned two-phase TiAl/Ti3Al material is produced by induction zone melting and deformed in uniaxial compression. Above 1000 K the strain rate sensitivity is independent of the lamellar orientation and increases strongly with increasing deformation temperature. Results for the strain rate sensitivity parameters are somewhat lower than those obtained for γ-TiAl single- and polycrystals. If the lamellae are oriented parallel or perpendicular to the deformation axis, the flow stress decreases with increasing strain. After plastic deformation the dislocation density in the lamellae is remarkably low indicating recovery processes. At the lamellar interfaces misfit dislocations and periodic arrangements of dislocations with Burgers vectors inclined to the lamellar boundaries are found. In contrast to deformation at lower temperatures, deformation twinning is rare.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McCullough, C., Valencia, J.J., Levy, C.G., and Mehrabian, R., Acta Metall. 37, 1321 (1989).CrossRefGoogle Scholar
2. Fujiwara, T., Nakamura, A., Hosomi, M., Nishitani, S.R., Shirai, Y., and Yamaguchi, M., Phil. Mag. A 61, 591 (1990).CrossRefGoogle Scholar
3. Umakoshi, Y., Nakano, T., and Yamane, T., Scr. Metall. Mater. 25, 1525 (1991).CrossRefGoogle Scholar
4. Inui, H., Oh, M.H., Nakamura, A., and Yamaguchi, M., Acta Metall. Mater. 40, 3095 (1992).CrossRefGoogle Scholar
5. Umakoshi, Y. and Nakano, T., Acta Metall. Mater. 41, 1155 (1993).CrossRefGoogle Scholar
6. Inui, H., Kishida, K., Misaki, M., Kobayashi, M., Shirai, Y., and Yamaguchi, M., Phil. Mag. A 72, 1609 (1995).CrossRefGoogle Scholar
7. Kishida, K., Yokoshima, S., Johnson, D.R., Inui, H., and Yamaguchi, M., in Stability of Materials, edited by Gonis, A., Turchi, P.E.A., and Kudmovsky, J., (Plenum Press, New York, 1996) p. 547.CrossRefGoogle Scholar
8. Kawabata, T., Kanai, T., and Izumi, O., Acta Metall. 33, 1355 (1985).CrossRefGoogle Scholar
9. Viguier, B., Bonneville, J., and Martin, J.-L., Acta Mater. 44, 4403 (1996).CrossRefGoogle Scholar
10. Wilkins, D., Heinrich, H., and Kostorz, G., Mater. Sci. Eng. A234–236, 343 (1997).Google Scholar
11. Schlögl, S.M. and Fischer, F.D., Phil. Mag. A 75, 621 (1997).CrossRefGoogle Scholar
12. Sphtig, P., Bonneville, J., and Martin, J.-L., Mater. Sci. Eng. A 167, 73 (1993).Google Scholar
13. Appel, F. and Wagner, R., Mater. Sci. Eng. R 22, 187 (1998).CrossRefGoogle Scholar
14. Ruano, O.A. and Sherby, O.D., Rev. Phys. Appl. 23, 625 (1988).CrossRefGoogle Scholar