Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T03:15:39.874Z Has data issue: false hasContentIssue false

High-Temperature Behavior of Grain Boundaries from Embedded Atom Method Molecular Dynamics Simulation

Published online by Cambridge University Press:  28 February 2011

J. F. Lutsko
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
D. Wolf
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
S. R. Phillpot
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

The behavior of a metallic grain boundary at high temperatures is studied using an embedded atom potential. A recently developed molecular dynamics code is used which allows the simulation of an isolated grain boundary at temperatures as high as the bulk melting point. The stability of the boundary below the melting point is studied and compared with earlier investigations which have suggested the existence of a “premelting“ transition. It is found that the boundary migrates at high temperature but remains well defined up to the bulk melting point. In contrast to simulations of ideal crystals, it was not possible to superheat the grain boundary due to the nucleation of bulk melting at the boundary.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ciecotti, G., Guillope, M., and Pontikis, V., Phys. Rev. B27, 5576 (1983); M. Guillope, G. Ciccotti, and V. Pontikis, Surf. Sci. 144, 67 (1984); M. Guillope, J. Physique, 47, 1347 (1986).Google Scholar
2. Carrion, F., Kalonji, G., and Yip, S., Scripta Metall. 17, 915 (1983); P. Deymier, G. Kalonji, R. Nejafabadi, and S. Yip, Surf. Sci. 144, 77 (1984).Google Scholar
3. Ho, P. S., Kwok, T., Nguyen, T., Nitta, C., and Yip, S., Scripta Metall. 19, 993 (1985); T. Nguyen, P. S. Ho, T. Kwok, C. Nitta, and S. Yip, Phys. Rev. Lett. 57, 1919 (1986).Google Scholar
4. Deymier, P., Ph. D. Thesis, Massachusettes Institute of Technology, 1985; P. Deymier, A. Taiwo, and G. Kalonji, Acta Metall. 35, 2819 (1987).Google Scholar
5. Broughten, J. Q. and Gilmer, G. H., Phys. Rev. Lett. 56, 2692 (1986).Google Scholar
6. Gleiter, H. and Chalmers, B., in Progress in Materials Science, Vol. 16, edited by Chalmers, B., J. W. Christian and T. B. Massalski, Pergamon Press, 1972.Google Scholar
7. Pontikis, V., in Proceedings of the International Conference on Structure and Properties of Internal Interfaces, Lake Placid, N. Y,, July 1987 (to be published).Google Scholar
8. Foiles, S. M., Baskes, M. I., and Daw, M.S., Phys.Rev. B33, 7983 (1986).CrossRefGoogle Scholar
9. Seeger, A. and Schottky, G., Acta Metall. 7, 495 (1959); H. J. Frost, M. F. Ashby and F. Spaepen, A Catalogue of [100], [110] and [111] Symmetric Tilt Boundaries in FCC Hard Sphere Crystals, Materials Research Laboratory Technical Report, Harvard Univ. (1982), unpublished; D. Wolf, submitted to Acta Metall.Google Scholar
10. Lutsko, J. F., Wolf, D., Yip, S., Phillpot, S. R., and Nguyen, T., Phys. Rev. B (to be published).Google Scholar
11. Lutsko, J. F., Wolf, D., Phillpot, S. R., and Yip, S., submitted to Phys. Rev. B.Google Scholar
12. Parrinello, M. and Rahman, A., J. Appl. Phys. 52, 7182 (1981).CrossRefGoogle Scholar
13. Wolf, D., J. de Phys. Colloque C4 46, C4197 (1985).Google Scholar
14. Lutsko, J. F. and Wolf, D., submitted to Phys. Rev. Lett.Google Scholar