Published online by Cambridge University Press: 10 February 2011
The atomic structure of dislocation cores in NiAl is studied by high-resolution transmission electron microscopy (HRTEM) and molecular dynamics (MD) calculations. Results are presented on dislocations with Burgers vectors b=a<100> and a<111>. A comparison with HRTEM image simulations indicates that the core of a 45° a <100> dislocation consists of Al atoms. The Burgers vector distribution shows a width of 2.2b. This corresponds very closely to MD results and is consistent with the relatively low Peierls stress of this dislocation. By detailed image analysis the angular dependence of the shear stress components of the dislocation are made visible. MD results obtained from 45° dislocations with opposite screw components suggest, that the helicity of the screw component might be discernible from high-resolution electron micrographs. A a<111> dislocation with <110> line direction is shown which exhibits a rather wide dissociation, probably into two a/2<111> partials.