Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T04:57:01.363Z Has data issue: false hasContentIssue false

High-Resolution Electron Microscopy of Dislocation Cores in NiAl

Published online by Cambridge University Press:  10 February 2011

D. Stöckle
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
W. Sigle
Affiliation:
Max-Planck-Institut für Metallforschung, Seestraße 92, 70174 Stuttgart, Germany
A. Seeger
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
Get access

Abstract

The atomic structure of dislocation cores in NiAl is studied by high-resolution transmission electron microscopy (HRTEM) and molecular dynamics (MD) calculations. Results are presented on dislocations with Burgers vectors b=a<100> and a<111>. A comparison with HRTEM image simulations indicates that the core of a 45° a <100> dislocation consists of Al atoms. The Burgers vector distribution shows a width of 2.2b. This corresponds very closely to MD results and is consistent with the relatively low Peierls stress of this dislocation. By detailed image analysis the angular dependence of the shear stress components of the dislocation are made visible. MD results obtained from 45° dislocations with opposite screw components suggest, that the helicity of the screw component might be discernible from high-resolution electron micrographs. A a<111> dislocation with <110> line direction is shown which exhibits a rather wide dissociation, probably into two a/2<111> partials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Seeger, A., in: Handbuch der Physik, Vol.7, Ed.: Fligge, S., Springer-Verlag, 1954,383.Google Scholar
2. Vitek, V., Cryst.Latt.Defects 5, 1 (1974).Google Scholar
3. Miracle, D.B., Acta met. mat. 41, 649 (1993).CrossRefGoogle Scholar
4. Schroll, R., Vitek, V. and Gumbsch, P., Acta mater. Vol.46, 903 (1998).CrossRefGoogle Scholar
5. Anstis, G.R. and Hutchison, J.L., in: Dislocations in Solids, Vol.9, Ed.: Nabarro, F.R.N., North Holland, 1992, 1.Google Scholar
6. Phillipp, F., Höschen, R., Osaki, M., Möbus, G. and Rijhle, M., Ultramicroscopy 56, 1 (1994).CrossRefGoogle Scholar
7. Fischmeister, H. F., Elssner, G., Gibbesch, B., Kadow, K.-H., Kawa, F., Korn, D., Mader, W. and Turwitt, M., Rev. Sci. Instrum. 64(1), 234 (1993).CrossRefGoogle Scholar
8. Schroll, R., Gumbsch, P., and Vitek, V., Mater. Sci. Eng. A 233, 116 (1997).CrossRefGoogle Scholar
9. Ludwig, M. and Gumbsch, P., Modelling Simul. Mater.Sci.Eng. 3, 533 (1995).CrossRefGoogle Scholar
10. Stadelmann, P., Ultramicroscopy 21, 131 (1987).CrossRefGoogle Scholar
11. Hao, Y., Jin-Phillipp, Y. and Phillipp, F., to be published.Google Scholar
12. Mills, M.J. and Miracle, D.B., Acta met.mat. 41, 85 (1993).CrossRefGoogle Scholar
13. Peierls, R., Proc. Phys. Soc. London 52, 34 (1940).CrossRefGoogle Scholar
14. Nabarro, F.R.N., Proc. Phys. Soc. London 59, 256 (1947).CrossRefGoogle Scholar
15. Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed. (John Wiley & Sons, 1982),Google Scholar
16. Sigle, W., Phil. Mag. A, in the press.Google Scholar