Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T03:43:16.852Z Has data issue: false hasContentIssue false

High-power Organic Field-effect Transistors Using a Three-dimensional Structure

Published online by Cambridge University Press:  01 February 2011

M. Uno
Affiliation:
[email protected], TRI-Osaka, Information & Electronics, Izumi, Japan
Yuri Hirose
Affiliation:
[email protected], Osaka University, Graduate School of Science, Toyonaka, Osaka, Japan
Kengo Nakayama
Affiliation:
[email protected], Osaka University, Graduate School of Science, 1-1 Machikaneyama, Toyonaka, 560-0043, Japan
Takafumi Uemura
Affiliation:
[email protected], Osaka University, Department of Chemistry, @Graduate School of Science, 1-1 Machikaneyama, Toyonaka, 560-0043, Japan, +81-6-6879-4169
Yasuhiro Nakazawa
Affiliation:
[email protected], Osaka University, Graduate School of Science, Toyonaka, Osaka, Japan
K. Takimiya
Affiliation:
[email protected], Hiroshima University, Graduate School of Applied Chemistry, Higashi-hiroshima, Japan
Jun Takeya
Affiliation:
[email protected], Osaka University, Dept. of Chemistry, Grad. School of Science, 1-1 Machikaneyama, Toyonaka, 560-0043, Japan, +81-6-6850-5398, +81-6-6850-6797
Get access

Abstract

Three-dimensional organic field-effect transistors with multiple sub-micrometer channels are developed to exhibit high current density and high switching speed. The sub-micrometer channels are arranged perpendicularly to substrates and are defined by the height of a multi-columnar structure fabricated without using electron-beam-lithography technique. For devices with dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene, extremely high current density exceeding 10 A/cm2 and fast switching within 200 ns are realized with an on-off ratio of 105. The unprecedented performance is beyond general requirements to control organic light-emitting diodes, so that even more extensive applications to higher-speed active-matrices and display-driving circuits can be realized with organic semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lin, Y. Y., Gundlach, D. J., Nelson, S. F., and Jackson, T. N., IEEE Electron Device Lett. 18, 606 (1997).Google Scholar
2 Anthony, J. E., Brooks, J. S., Eaton, D. L., and Parkin, S. R., J. Am. Chem. Soc. 123, 9482 (2001).Google Scholar
3 Yan, H., Zheng, Y., Blache, R., Newman, C., Lu, S., Woerle, J., and Facchetti, A., Adv. Mater. 20, 3393 (2008).Google Scholar
4 Yamamoto, T., Takimiya, K., J. Am. Chem. Soc. 129, 2224 (2007).Google Scholar
5 Klauk, H., Zschieschang, U., Pflaum, J., and Halik, M. Nature 445, 745 (2007).Google Scholar
6 Dickey, K. C., Anthony, J. E., and Loo, Y.-L., Adv. Mater. 18, 1721 (2006).Google Scholar
7 Uemura, T., Hirose, Y., Uno, M., Takimiya, K., and Takeya, J., Appl. Phys. Exp. 2, 111501 (2009).Google Scholar
8 Uno, M., Tominari, Y., Takeya, J., Appl. Phys. Lett. 93, 173301 (2008).Google Scholar
9 Uno, M., Doi, I., Takimiya, K., and Takeya, J., Appl. Phys. Lett. 94, 103307 (2009).Google Scholar
10 Stutzmann, N., Friend, R. H., Sirringhaus, H., Science 299, 1881 (2003).Google Scholar
11 Fujimoto, K., Hiroi, T., Kudo, K., and Nakamura, M., Adv. Mater. 19, 525 (2007).Google Scholar
12 Kitamura, M. and Arakawa, Y., Appl. Phys. Lett. 89, 223525 (2006).Google Scholar
13 Noh, Y. Y., Zhao, N., Caironi, M., and Sirringhaus, H., Nature Mater. 2, 784 (2007).Google Scholar
14 Wagner, V., Wobkenberg, P., Hoppe, A., and Seekamp, J., Appl. Phys. Lett. 89, 243515 (2006).Google Scholar