Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T13:15:18.686Z Has data issue: false hasContentIssue false

Highly Transparent AZO/Ag/AZO Multilayer Front Contact for n-i-p Silicon Thin-Film Solar Cells

Published online by Cambridge University Press:  16 May 2012

Martin Theuring
Affiliation:
NEXT ENERGY - EWE Research Center for Energy Technology at Carl von Ossietzky University Oldenburg, Germany
Martin Vehse
Affiliation:
NEXT ENERGY - EWE Research Center for Energy Technology at Carl von Ossietzky University Oldenburg, Germany
Ibrahim Noureddine
Affiliation:
NEXT ENERGY - EWE Research Center for Energy Technology at Carl von Ossietzky University Oldenburg, Germany
Karsten von Maydell
Affiliation:
NEXT ENERGY - EWE Research Center for Energy Technology at Carl von Ossietzky University Oldenburg, Germany
Carsten Agert
Affiliation:
NEXT ENERGY - EWE Research Center for Energy Technology at Carl von Ossietzky University Oldenburg, Germany
Get access

Abstract

Oxide-metal-oxide structures are an alternative to single material transparent electrical contacts. Among other advantages, these multilayer systems provide good conductivity and transmittance, even when fabricated at room temperature. Low temperature processing is a requirement for silicon thin-film solar cells on various flexible substrates. The design and fabrication of oxide-metal-oxide structures based on ZnO:Al and Ag are investigated in this work. Further the integration of an optimized multilayer electrode into an amorphous silicon solar cell in substrate configuration was performed. Measurement results and possible loss mechanisms are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Haug, F.-J., Söderström, T., Python, M., Terrazzoni-Daudrix, V., Niquille, X. and Ballif, C., Solar Energy Materials and Solar Cells 93, 884887 (2009).CrossRefGoogle Scholar
Yang, J., Banerjee, A. and Guha, S., Applied Physics Letters 70, 2975 (1997).CrossRefGoogle Scholar
Shah, A. V., Schade, H., Vanecek, M., Meier, J., Vallat-Sauvain, E., Wyrsch, N., Kroll, U., Droz, C. and Bailat, J., Progress in Photovoltaics: Research and Applications, 12(23), 113142 (2004).CrossRefGoogle Scholar
Liu, H., Avrutin, V., Izyumskaya, N., Özgür, Ü. and Morkoç, H., Superlattices and Microstructures 48, 458484 (2010).CrossRefGoogle Scholar
Kluth, O., Schöpe, G., Rech, B., Menner, R., Oertel, M., Orgassa, K. and Schock, H. W., Thin Solid Films 502, 311316 (2006).CrossRefGoogle Scholar
Liu, X., Cai, X., Mao, J. and Jin, C., Applied Surface Science 183, 103110 (2001).CrossRefGoogle Scholar
Sahu, D., Lin, S. and Huang, J., Applied Surface Science 252, 75097514 (2006).CrossRefGoogle Scholar
Guillén, C. and Herrero, J., Thin Solid Films 520, 117 (2011).CrossRefGoogle Scholar
Choa, S.-H., Cho, C.-K., Hwang, W.-J., Tae Eun, K. and Kim, H.-K., Solar Energy Materials and Solar Cells 95, 34423449 (2011).CrossRefGoogle Scholar
Han, H., Theodore, N.D. and Alford, T.L., Journal of Applied Physics 103, 013708 (2008).CrossRefGoogle Scholar
Zayats, A.V., Smolyaninov, I.I. and Maradudin, A. A., Physics Reports 408, 131314 (2005).CrossRefGoogle Scholar
Minami, T., Oohashi, K., Takata, S., Mouri, T. and Ogawa, N., Thin Solid Films 193, 721729 (1990).CrossRefGoogle Scholar
Meier, J., Dubail, S., Golay, S., Kroll, U., Faÿ, S., Vallat-Sauvain, E., Feitknecht, L., Dubail, J. and Shah, A., Solar Energy Materials and Solar Cells 74, 457467 (2002).CrossRefGoogle Scholar
Kluth, O., Rech, B., Houben, L., Wieder, S., Schöpe, G., Beneking, C., Wagner, H., Löffl, A. and Schock, H., Thin Solid Films 351, 247253 (1999).CrossRefGoogle Scholar
Atwater, H.A. and Polman, A., Nature Materials 9, 205–13 (2010).CrossRefGoogle Scholar