Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T04:35:58.725Z Has data issue: false hasContentIssue false

Highly Oriented Unsubstituted Polydiacetylene

Published online by Cambridge University Press:  25 February 2011

B. Jorgensen
Affiliation:
Materials Science and Technology Division, MS E549
M. Aldissi
Affiliation:
Materials Science and Technology Division, MS E549
R. Liepins
Affiliation:
Materials Science and Technology Division, MS E549
S. Agnew
Affiliation:
Isotope and Nuclear Chemistry Division, MS C346, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

Highly oriented, unsubstituted polydiacetylene was obtained by the polymerization of 1,3-butadiyne in perhydrotriphenylene (PHTP). The canal structure of PHTP induces a high degree of order in the polymer. Transparent orange crystals were formed which were shown by SEM to consist of structures oriented parallel to the long axis of the crystal. Resonance Raman and UV-visible spectroscopy indicate the polymer consists of seven to ten conjugated ene-yne type repeat units. Crystallization of the inclusion complex was induced inside glass capillaries so the crystals filled the entire space along the length of the capillary.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Farina, M., Makromol. Chem., Suppl. 4, 2135 (1981).Google Scholar
2. Allcock, H. R. and Levin, M. L., Macromolecules 18, 13241330 (1985).Google Scholar
3. Miyata, M., Kitahara, Y. and Takemoto, K., Polym. Bull. 2, 671674 (1980).Google Scholar
4. Farina, M., Silvestro, G. Di, and Sozzani, P., ACS Symp. Series, 337, 7994 (1987).Google Scholar
5. Chatani, Y. and Kuwata, S., Macromolecules 8, 12 (1975).CrossRefGoogle Scholar
6. Farina, M. and Silvestro, C. Di, Makromol. Chem. 183, 241 (1982).Google Scholar
7. Allegra, G., Farina, M., Immirzi, A., Colombo, A., Rossi, U., Broggi, R. and Natta, G., J. Chem. Soc. (B) 1967, 1020.Google Scholar
8. Armitage, J. B., Jones, E. R. H. and Whiting, M. C., J. Chem. Soc. 1951, 44.Google Scholar
9. Jorgensen, B., Liepins, R. and Agnew, S., Polym. Bull. 16, 263 (1986).Google Scholar
10. Farina, M., Audisio, G. and Bianchi, P. Bergomi, Chim. Ind. (Milan) 50, 446 (1968).Google Scholar
11. Farina, M., Pedretti, U., Gramegna, M. T. and Audisio, G., Macromolecules 3, 475 (1970).Google Scholar
12. Melveger, A. J. and Baughman, R. H., J. Polym. Sci., Phys. Ed., 11 603 (1973).Google Scholar
13. Exarhos, G. J., Risen, W. M. and Baughman, R. H., J. Amer. Chem. Soc. 98, 481 (1976).Google Scholar
14. Shand, M. L., Chance, R. R., LePostollec, M. and Schott, M., Phys. Rev. B 25, 4431 (1982).Google Scholar
15. Bitler, S. P. and Wudl, F., Proc. ACS Div. Polym. Mat. Sci. Eng., 54, 292 (1986).Google Scholar