Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T02:00:05.827Z Has data issue: false hasContentIssue false

High-Conductivity Solution-Processed Carbon Nanotube Networks as Transparent Electrodes in Organic Solar Cells

Published online by Cambridge University Press:  20 June 2013

Aminy E. Ostfeld
Affiliation:
Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, U.S.A.
Siân Fogden
Affiliation:
Linde Nanomaterials, Linde LLC, 1970 Diamond Street, San Marcos, CA 92078, U.S.A.
Amélie Catheline
Affiliation:
Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, U.S.A. Linde Nanomaterials, Linde LLC, 1970 Diamond Street, San Marcos, CA 92078, U.S.A.
Kee-Chan Kim
Affiliation:
Linde Nanomaterials, Linde LLC, 1970 Diamond Street, San Marcos, CA 92078, U.S.A.
Kathleen Ligsay
Affiliation:
Linde Nanomaterials, Linde LLC, 1970 Diamond Street, San Marcos, CA 92078, U.S.A.
Graham A. McFarlane
Affiliation:
Linde Nanomaterials, Linde LLC, 1970 Diamond Street, San Marcos, CA 92078, U.S.A.
Ana Claudia Arias
Affiliation:
Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, U.S.A.
Get access

Abstract

Solutions of individual, unbroken single-walled carbon nanotubes in organic solvent were fabricated in a reductive dissolution process. Transparent conductive films deposited from these organic inks gave a significantly higher conductivity to absorptivity ratio than those cast from an aqueous dispersion of carbon nanotubes. For example, films from the organic ink have achieved a sheet resistance of 250 Ω/□ with transmittance of 92% at 550 nm wavelength, compared to 76% transmittance for a 250 Ω/□ film from the aqueous dispersion. The promise of these films as transparent electrodes has been demonstrated by their incorporation into organic solar cells with power conversion efficiency of 2.3%, comparable to that of solar cells produced using indium tin oxide transparent electrodes.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, Z., Cotterell, B., Wang, W., Guenther, E., and Chua, S.-J., Thin Solid Films 394, 202 (2001).CrossRefGoogle Scholar
Espinosa, N., García-Valverde, R., Urbina, A., and Krebs, F.C., Sol. Energ. Mat. Sol. Cells 95, 1293 (2011).CrossRefGoogle Scholar
Du Pasquier, A., Unalan, H.E., Kanwal, A., Miller, S., and Chhowalla, M., Appl. Phys. Lett. 87, 203511 (2005).CrossRefGoogle Scholar
Rowell, M.W., Topinka, M.A., McGehee, M.D., Prall, H.-J., Dennler, G., Sariciftci, N.S., Hu, L., and Grüner, G., Appl. Phys. Lett. 88, 233506 (2006).CrossRefGoogle Scholar
Kymakis, E., Stratakis, E., and Koudoumas, E., Thin Solid Films 515, 8598 (2007).CrossRefGoogle Scholar
Kim, Y.H., Sachse, C., Zakhidov, A.A., Meiss, J., Zakhidov, A.A., Müller-Meskamp, L., and Leo, K., Org. Electron. 13, 2422 (2012).CrossRefGoogle Scholar
Hecht, D., Hu, L., and Grüner, G., Appl. Phys. Lett. 89, 133112 (2006).CrossRefGoogle Scholar
Lyons, P.E., De, S., Blighe, F., Nicolosi, V., Pereira, L.F.C., Ferreira, M.S., and Coleman, J.N., J. Appl. Phys. 104, 044302 (2008).CrossRefGoogle Scholar
Nirmalraj, P.N., Lyons, P.E., De., S., Coleman, J.N., and Boland, J.J., Nano Lett. 9, 3890 (2009).CrossRefGoogle Scholar
Pénicaud, A., Poulin, P., Derré, A., Anglaret, E., and Petit, P., J. Am. Chem. Soc. 127, 8 (2005).CrossRefGoogle Scholar
Fogden, S., Kim, K.-C., Ma, C., Ligsay, K., and McFarlane, G., NSTI-Nanotech 1, 163 (2011).Google Scholar
Fogden, S., Howard, C.A., Heenan, R.K., Skipper, N.T., and Shaffer, M.S.P., ACS Nano 6, 54 (2012).CrossRefGoogle Scholar