Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T03:26:44.027Z Has data issue: false hasContentIssue false

The High Temperature Stability and Relaxation of UHV/CVD SiGe Thin Films

Published online by Cambridge University Press:  25 February 2011

S. R. Stiffler
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY
C. L. Stanis
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY
M. S. Goorsky
Affiliation:
UCLA Department of Materials Science, Los Angeles, CA.
K. K. Chan
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY
Get access

Abstract

ABSTRACT:: High temperature (950°C) annealing is used to stimulate relaxation in UHV/CVD SiGe thin films. It is found that the films are stable to thicknesses which exceed the stability criterion of Matthews and Blakeslee [1] by a small amount. In unstable films, the misfit dislocation density increases with annealing time, reaching a maximum value. For films which exceed the empirical stability criterion by a relatively small amount, the misfit dislocations relax the film to a strain given by the film thickness and the empirical stability criterion. However, large remnant strains are observed when the relaxation process introduces relatively high dislocation densities (≳5 misfits/micron). Associated with large remnant strains are a marked propensity for dislocation banding and looping deep into the substrate with extended annealing. These results are discussed with respect to the magnitude of the misfit dislocation nucleation barrier and the energy associated with interactions among misfit dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[I] Matthews, J. W. and Blakeslee, A. E., J. Crystal Growth 27, 118 (1974).Google Scholar
Hull, R. and Bean, J. C., Appl. Phys. Lett. 55, 1900 (1990).CrossRefGoogle Scholar
[3] Houghton, D. C., Perovic, D. D., Baribeau, J.-M., and Weatherly, G. C., J. Appl. Phys. 67, 1850 (1991).Google Scholar
[4] Timbrell, P. Y., Baribeau, J.-M., Lockwood, D. J., and McCaffrey, J. P., J. Appl. Phys. 67, 6292(1990).CrossRefGoogle Scholar
[5] Stiffler, S. R., Comfort, J. H., Stanis, C. L., Harame, D. L., DeFrésart, E., and Meyerson, B. S., J. Appl. Phys. 70, 1416 (1991); 70, 7194 (1991).CrossRefGoogle Scholar
[6] Meyerson, B. S., Uran, K. J., and LeGoues, F. K., Appl. Phys. Lett. 53, 2555 (1988).Google Scholar
[7] Tsao, J. Y. and Dodson, B. W., Appl. Phys. Lett. 53, 848 (1988).Google Scholar
[8] Stiffler, S. R., Stanis, C. L., Goorsky, M. S., and Chan, K. K., J. Appl. Phys. 71, 4814 (1992).Google Scholar
[9] Stiffler, S. R., Stanis, C. L., Goorsky, M. S., Chan, K. K., and de Frésart, E., J. Appl. Phys. 71, 4820 (1992).Google Scholar
[10] Willis, J. R., Jain, S. C. and Bullough, R., Appl. Phys. Lett. 59, 920 (1991).Google Scholar
[11] for a review see Matthews, J. W. in Epitaxial Growth, Part B, Matthews, J. W., ed., (Academic Press, New York 1975) pages 598606.Google Scholar
[12] Green, M. L., Weir, B. E., Brassen, D., Hsieh, Y. F., Higashi, G., Feygenson, A., Feldman, L. C., and Headrick, R. L., J. Appl. Phys. 69, 745 (1991).CrossRefGoogle Scholar