Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T03:58:19.681Z Has data issue: false hasContentIssue false

High Temperature Annealing of Simox Layers Physical Mechanisms of Oxygen Segregation

Published online by Cambridge University Press:  26 February 2011

C. Jaussaud
Affiliation:
C.E.A./I.R.D.I./D.L.E.T.I. 85 X - 38041 GRENOBLE Cedex (France)
J. Margail
Affiliation:
C.E.A./I.R.D.I./D.L.E.T.I. 85 X - 38041 GRENOBLE Cedex (France)
J. Stoemenos
Affiliation:
University of Thessaloniki - THESSALONIKI (Greece)
M. Bruel
Affiliation:
C.E.A./I.R.D.I./D.L.E.T.I. 85 X - 38041 GRENOBLE Cedex (France)
Get access

Abstract

High temperature annealing of Simox wafers (T > 1300°C), has been proved to dramaticaly increase the quality of the SOI structure.

The heat treatment leads to a redistribution of the implanted oxygen, opposite to its concentration profile, towards the buried layer.

This paper describes from a thermodynamical point of view the SiO2 precipitates dissolution. The physical mechanisms of the oxygen migration are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ruffel, J.P., Douglas-Hamilton, D.H. and Kaim, R.E.; Nucl. Inst. and Meth. B 21, 229 (1987)Google Scholar
2. Hemment, P.L.F. in Semiconductor-on-Insulators and Thin Film Transistor Technology, edited by Chiang, A., Geis, M.W., and Pfeiffer, L. (Mater. Res. Soc. Proc. 53, 1985) pp. 207221 Google Scholar
3. Izumi, K., Doken, M. and Ariyoshi, H., Electron. lett. 14 N° 18 594 (1978)Google Scholar
4. Lam, H.W., Pinizzotto, R.F., J. Cryst. Growth, 63 554 (1983 Google Scholar
5. Hemment, P.L.F. in Comparison of Thin Film Transistors and soi Technologies, edited by Lam, H.W. and Thomson, M.J. (Mater. Res. Soc. Proc. 33) pp. 41–51Google Scholar
6. Foster, D.J., Electron. Lett. 19 N° 17 684 (1983)Google Scholar
7. Cristoloveanu, S., Lee, J.H., Pumfrey, J., Davis, J.R., Arrowsmith, R.P. and Hemment, P.L.F., J. Appl. Phys. 60 (9) 3199 (1986)Google Scholar
8. Jaussaud, C., Stoemenos, J., Margail, J., Dupuy, M., Martin, P., Blanchard, B., and Bruel, M., Appl. Phys. Lett. 46, 1064 (1985)CrossRefGoogle Scholar
9. Margail, J., Stoemenos, J., Jaussaud, C., Dupuy, M., Martin, P., Blanchard, B., and Bruel, M., in Energy Bean-Solid Interaction and Transient Thermal Processing, edited by Nguyen, V.T., and Cullis, A.G. (Europ. Mater. Res. Soc. Proc. 4, 1985) pp. 519–524Google Scholar
10. Stoemenos, J., Jaussaud, C., Bruel, M. and Margail, J., J. Cryst. Growth 73 546 (1985)Google Scholar
11. Celler, G.K., Hemment, P.L.F., West, K.W. and Gibson, J.M. in semiconductor-on-Insulators and Thin Film Transistor Technology, edited by Chiang, A., Geis, M.W., and L. Pfeiffer (Mater. Res. Soc. Proc. 53, 1985) pp. 227–232CrossRefGoogle Scholar
12. Celler, G.K., Hemment, P.L.F., West, K.W. and Gibson, J.M. 48 532 (1986)Google Scholar
13. Cristoloveanu, S.. These proceedingsGoogle Scholar
14. Hemment, P.L.F., Maydell-Ondrusz, E., Stephen, K.G., Kilner, J.A. and Butcher, J., Vacuum 34, 203 (1984)CrossRefGoogle Scholar
15. Bourret, A. in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J.C. Jr., Pearton, S.J., Corbett, J.W. and Pennycook, S.J. (Mater. Res. Soc. Proc. 59, 1985) pp. 223–236Google Scholar
16. Hu, S.M., in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J.C. Jr., Pearton, S.J., Corbett, J.W. and Pennycook, S.J. (Mater. Res. Soc. Proc. 59, 1985) pp. 249267 Google Scholar
17. Tan, T.Y., in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J.C. Jr., Pearton, S.J., Corbett, J.W. and Pennycook, S.J. (Mater. Res. Soc. Proc. 59, 1985) pp. 269–279Google Scholar
18. A. Bourret. Microscopy of semi-conductor materials conference. Oxford march 1987. To be published in “Institute of Physics Conference series”Google Scholar
19. Bender, H., Phys. Stat. Sol. (a) 86, 245 (1985)Google Scholar
20. Holland, O.W., Sjoreen, T.P., Fathy, D. and Narayan, J., Appl. Phys. Lett. 45, 1081 (1984)CrossRefGoogle Scholar
21. van Ommen, A.H., Koek, B.H. and Viegers, M.P.A Appl. Phys. Lett. 49, 628 (1986)CrossRefGoogle Scholar
22. Stoemenos, J., Margail, J., Dupuy, M. and Jaussaud, C., Physica Scripta 35, 42 (1987)Google Scholar
23. Margail, J., thesis, Grenoble University (1987)Google Scholar
24. Bourret, A., Thibault-Dessaux, J. and Seidman, D.N., J. Appl. Phys. 55, 825 (1984)Google Scholar
25. Stoemenos, J. and Margail, J., Thin Solid Films 135, 115 (1986)Google Scholar
26. Burke, J., The Kinetics of Phase Transformation in Metals, (Pergamon, Oxford, 1965)Google Scholar
27. Mikkelsen, J.C. Jr. in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J.C. Jr., Pearton, S.J., Corbett, J.W. and Pennycook, S.J. (Mater. Res. Soc. Proc. 59, 1985) pp. 19–30Google Scholar
28. Stavola, M., Patel, J.R., Kimerling, L.C. and Freeland, P.E., Appl. Phys. Lett. 42, 73 (1983)Google Scholar
29. Maillet, S., Stuck, R., Grob, J.J., Golanski, A., Pantel, R., and Perio, A., Nucl. Inst. Meth. B19/20 (1987) 294298 Google Scholar
30. Mogro-Campero, A., Love, R.P., Lewis, N., Hall, E.L. and McConnell, M.D., Appl. Phys. Lett. 60 (6), 2103 (1986)Google Scholar
31. Mao, B.Y., Chang, P.H., Lam, H.W., Shen, B.W. and Keenan, J.A., Appl. Phys. Lett. 48 (12), 794 (1986)Google Scholar
32. Chang, P.H. and Mao, B.Y., AppI. Phys. Lett. 50 (3), 152 (1987)Google Scholar
33. Stoemenos, J., Margail, J., Jaussaud, C., Dupuy, M. and Bruel, M., Appl. Phys. Lett. 48 (21), 1470 (1986)CrossRefGoogle Scholar
34. Brebec, G., Seguin, R., Bevenot, J. and Martin, C., Acta Metal. 28, 327 (1980)Google Scholar