Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T14:52:15.875Z Has data issue: false hasContentIssue false

High spatial resolution ultrafast scanning tunneling microscopy

Published online by Cambridge University Press:  11 February 2011

Dzmitry Yarotski
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM
Antoinette J. Taylor
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM
Get access

Abstract

We demonstrate ultrafast dynamical imaging of surfaces using a scanning tunneling microscope with a low-temperature-grown GaAs tip photoexcited by 100-fs, 800-nm pulses. We detect picosecond transients on a coplanar stripline and demonstrate a temporal resolution (full-width at half maximum) of 1.7 ps. By dynamically imaging the stripline, we demonstrate that the local conductivity in the sample is reflected in the transient correlated current and that 20-nm spatial resolution is achievable for a 2 ps transient, correlated signal. We apply this technique of photoconductively-gated ultrafast scanning tunneling microscopy to study carrier dynamics in InAs/GaAs self-assembled quantum dot samples at T=300 K. The initial carrier relaxation proceeds via Auger carrier capture from the InAs wetting layer (WL) on a timescale of 1–2 ps, followed by recombination of carriers on a 900 ps timescale. Finally, we demonstrate junction-mixing ultrafast STM (JM-USTM) using picosecond voltage pulses propagating on a patterned metal-on-metal (Ti/Pt). Using JM-USTM we have achieved a spatio/temporal resolution of 1 nm/8 ps.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Weiss, S., Ogletree, D. F., Botkin, D., Salmeron, M., and Chemla, D. S., Appl. Phys. Lett. 63, 25672569 (1993).Google Scholar
2. Groenveld, R. H. M. and van Kempen, H., Appl. Phys. Lett. 69, 22942296 (1996).Google Scholar
3. Keil, U. D., Jensen, J. J., and Hvam, J. M., J. Appl. Phys. 81, 29292933 (1997).Google Scholar
4. Botkin, D., Glass, J., Chemla, D. S., Ogletree, D. F., Salmeron, M. and Weiss, S., Appl. Phys. Lett. 69, 1321 (1996).Google Scholar
5. Weiss, S., Botkin, D., Ogletree, D. F., Salmeron, M. and Chemla, D. S., Phys. Stat. Sol. (b) 188, 343359 (1995).Google Scholar
6. Groeneveld, R. H. M., Rasing, Th., Kaufmann, L. M. F., Smalbrugge, E., Wolter, J. H., Melloch, M. R., and van Kempen, H., J. Vac. Sci. Technol. B 14, 861863 (1996).Google Scholar
7. Prins, M. W. J., van der Wielen, M. C.M. M., Jansen, R., Abraham, D. L., and van Kempen, H., Appl. Phys. Lett. 64, 12071209 (1994).Google Scholar
8. Prins, M. W. J., Jansen, R., Groeneveld, R. H. M., van Gelder, Ap. P., and van Kempen, H., Phys. Rev. B 53, 80908104 (1996).Google Scholar
9. Nunes, G. and Amer, N. M., Appl. Phys. Lett. 63, 18511853 (1993).Google Scholar
10. Lai, R. K., Hwang, J.-R., Nees, J., Norris, T. B., and Whitaker, J. F., Appl. Phys. Lett. 69, 18431845 (1996).Google Scholar
11. Donati, G. P., Rodriguez, G., and Taylor, A. J., in Ultrafast Phenomena XI, p. 159161 (Springer-Verlag, Berlin, 1998).Google Scholar
12. Donati, G. P., Rodriguez, G., and Taylor, A. J., J. Opt. Soc. Am. B 17, 10771083 (2000).Google Scholar
13. Grischkowsky, D. R., Ketchen, M. B., Chi, C.-C., Duling, I. I. N., Halas, N. J., Halbout, J.-M., and May, P. G., IEEE J. Quantum Electron., 24, 221225 (1988).Google Scholar
14. Park, S.-G., Weiner, A. M., Melloch, M. M., Siders, C. W., Siders, J. L. W., and Taylor, A. J., J. Quantum Electron., 35, 12571268 (1999).Google Scholar
15. Stroscio, J. A. and Kaiser, W. J., vol. 27, Scanning Tunneling Microscopy, p. 33 (Academic Press, 1993).Google Scholar
16. Schmitt-Rink, S., Miller, D., and Chemla, D., Phys. Rev. B 35, 81138125 (1987).Google Scholar
17. Lester, L.F., Stintz, A., Li, H., Newell, T.C., Pease, E.A., Fuchs, B.A., and Malloy, K.J., IEEE Photon. Technol. Lett. 11, 931933 (1999).Google Scholar
18. Liu, G.T., Stintz, A., Li, H., Malloy, K.J., and Lester, L.F., Electron. Lett. 35, 11631165 (1999).Google Scholar
19. Newell, T.C., Bossert, D.J., Stintz, A., Fuchs, B.A., Malloy, K.J., and Lester, L.F., IEEE Photon. Tech. Lett. 11, 15271529 (1999).Google Scholar
20. Morris, D. and Perret, N., Appl. Phys. Lett. 75, 35933595 (1999).Google Scholar
21. Yamanaka, K., Suzuki, K., Ishida, S., and Arakawa, Y., Appl. Phys. Lett. 73, 14601462 (1998).Google Scholar
22. Adler, F., Geiger, M., Bauknecht, A., Scholz, F., Schweizer, H., Pilkuhn, M.H., Ohnesorge, B., and Forchel, A., J. Appl. Phys. 80, 40194026 (1996).Google Scholar
23. Uskov, A.V., McInerney, J., Adler, F., Schweizer, H., and Pilkuhn, M.H., Appl. Phys. Lett. 72, 5860 (1998).Google Scholar
24. Ferreira, R. and Bastard, G., C.R. Acad. Sci. Paris, t.327, Serie Iib, p.901906 (1999).Google Scholar
25. Grundmann, M., Stier, O., and Bimberg, D., Phys. Rev. B 52, 1196911981 (1995-II).Google Scholar
26. Yarotski, Dzmitry A., Averitt, Richard D., Negre, Nicolas, Crooker, Scott A., Taylor, Antoinette J., Donati, Giovanni P., Stintz, Andreas, Lester, Luke F., and Malloy, Kevin J., J. Opt. Soc. Am. B 19, 1480 (2002).Google Scholar
27. Simmons, J. G., J. Appl. Phys. 34, 238 (1963).Google Scholar
28. Nunes, G. and Freeman, M. R., Science 262, 1029 (1993).Google Scholar
29. Yarotski, D. A., Donati, G. P., and Taylor, A. J., Proceedings of SPIE 4643, 187 (2002).Google Scholar
30. Yarotski, D. A. and Taylor, A. J., Appl. Phys. Lett. 81, 1143 (2002).Google Scholar
31. Auston, D. H., in Picosecond Optoelectronic Devices, edited by Lee, C. H. (Academic, London 1984), pp. 73116.Google Scholar
32. Steeves, G. M., Elezzabi, A. Y., and Freeman, M. R., Appl. Phys. Lett. 72, 504506 (1998).Google Scholar
33. Khusnatdinov, N. N., Nagle, T. J., and Nunes, G., Appl. Phys. Lett. 77, 44344436 (2000).Google Scholar