Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T03:58:57.412Z Has data issue: false hasContentIssue false

High Resolution X-Ray Diffraction Analysis of Piezoelectric LiNbO3 Films.

Published online by Cambridge University Press:  15 February 2011

Yoshihiko Shibata
Affiliation:
Central Laboratory, Asahi Chemical Industry Co., Ltd. Samejima, Fuji, Shizuoka, 416, Japan
Naohiro Kuze
Affiliation:
Central Laboratory, Asahi Chemical Industry Co., Ltd. Samejima, Fuji, Shizuoka, 416, Japan
Masahiro Matsui
Affiliation:
Central Laboratory, Asahi Chemical Industry Co., Ltd. Samejima, Fuji, Shizuoka, 416, Japan
Masaki Kanal
Affiliation:
The Institute of, Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka, 567, Japan
Tomoji Kawai
Affiliation:
The Institute of, Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka, 567, Japan
Get access

Abstract

Thin LINbO3 films are deposited on (001) sapphire and (001) LiTaO3 substrates by using pulsed excimer-laser ablation. These films are evaluated by high-resolution X-ray diffraction (HRXRD) analysis. Strained LiNbO3 films in which the a-axis is longer and the c-axis is shorter than those of LiNbO3 single crystals are deposited on the sapphire substrates. On the other hand, extremely high-quality LiNbO3 films in which the a-axis of the films is the same as that of substrates are grown on the LiTaO substrates. X-ray rocking curves for the (006) reflection showed very narrow full width at half maximum (FWHM) of 208 arcsec for the films on the sapphire substrates, and 9 arcsec for the films on LiTaO3 substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Qadri, S. B., Horwitz, J. S., Chrisey, D. B., Auyeung, R. C. Y. and Grabowski, K. S., Appl. Phys. Lett. 66, p.1605(1995).Google Scholar
2. Lu, Z., Hiskes, R., DiCarolis, S. A., Route, R. K., Feigelson, R. S., Leplingard, E. and Fouquet, J. E., J. Mater. Res. 9, p.2258(1994).Google Scholar
3. Shibata, Y., Kaya, K., Akashi, K., Kanai, M., Kawai, T. and Kawai, S., Appl. Phys.Lett., 61, 1000(1992).Google Scholar
4. Shibata, Y., Kaya, K., Akashi, K., Kanai, M., Kawai, T. and Kawai, S., Appl. Phys. Lett., 62, 3046(1993).Google Scholar
5. Shibata, Y., Kaya, K., Akashi, K., Kanai, M., Kawai, T. and Kawai, S. in Laser Ablation in Materials Processing: Fundamentals and Applications, edited by Braren, B., Dubowski, J.J. and Norton, D.P. (Mater. Res. Soc. Proc. 285, Pittsburgh, PA 1993), p.361366.Google Scholar
6. Shibata, Y., Kaya, K., Akashi, K., Kanai, M., Kawai, T. and Kawai, S., J.Appl.Phys.,77,1498(1995).Google Scholar
7. Campbell, J.J. and Jones, W.R., IEEE Trans. Sonics. Ultrason. SU–14. 209(1968).Google Scholar
8. Shibata, Y., Kuze, N., Matsui, M., Kanai, M. and Kawai, T., submitted to Mater. Res. Soc. Symp. 1995 Fall Meeting ‘Advanced Lased Processing of materials - Fundamentals and Applications’.Google Scholar
9. Scherrer, P., Gott. Nachr.,2, p98(1918).Google Scholar
10. Fewster, P.F., Applied Surface Science,50, p.9(1991).Google Scholar