Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T04:22:10.964Z Has data issue: false hasContentIssue false

High Resolution Site-Selective Studies of Erbium-Centers in GaN and GaN:Mg.

Published online by Cambridge University Press:  01 February 2011

V. Glukhanyuk*
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.
H. Przybylińska
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.
W. Jantsch
Affiliation:
Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenberger str. 69, A-4040 Linz, Austria.
*
1Corresponding author e-mail: [email protected], Phone: +48 22 843 66 01 3148, Fax +48 22 843 09 26
Get access

Abstract

In this work the high resolution optical spectroscopy is used in order to determine the positions of the Stark split 4I15/2, 4I11/2 and 4I9/2 energy levels of Er3+ in GaN and GaN:Mg. Photoluminescence and photoluminescence excitation spectra were measured at energies corresponding to the 4I15/24I9/2 and 4I15/24I11/2 absorption transitions. Low Er implant doses were applied to reduce the number of possible defects. In undoped GaN only a single Er-center was observed and no influence of Mg doping on the energy level splittings of this center in GaN:Mg was found. Numerical analysis based on point charge model was used to calculate parameters of the local crystal field (CF) acting on Er3+ ions. The splittings of the 4I9/2 and 4I11/2 energy levels were calculated in weak CF approach and good agreement with experimental results was obtained. The calculations confirmed that the symmetry of the erbium center in hexagonal GaN is C3v.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pomrenke, G. S., Klein, P.B., and Langer, D.W., Rare Earth Doped Semiconductors, Materials Research Society Symposium Proceedings, vol. 301, Materials Research Society, Pittsburg, 1993.Google Scholar
2. Steckl, A. J., Zavada, J. M., MRS Bull. 24, 33 (1999).Google Scholar
3. Steckl, A. J., Heinkelfeld, J., Garter, M., Birkhahn, R., Lee, D. S., Compound Semicond. 6, 48 (2000).Google Scholar
4. Lee, B. K., Chi, R. C-J., Chao, D. L-C., Cheng, J., Chry, I. Y-N., Beyette, F. R., Steckl, A. J., Applied Optics., 40 3552 (2001).Google Scholar
5. Garter, M., Scofield, J., Birkhahn, R., and Steckl, A. J., Appl. Phys. Lett., 74, 182 (1999).Google Scholar
6. Wang, Y. Q. and Steckl, A. J., Appl. Phys. Lett., 82 502 (2003).Google Scholar
7. Favennec, P. N., L'Haridon, H., Salvi, M., Moutonnet, D., and Guillou, Y. Le, Electron. Lett. 25, 718 (1989).Google Scholar
8. Kim, S., Rhee, S. J., Li, X., Coleman, J. J., and Bishop, S. G. Appl. Phys. Lett. 71, 2662 (1997).Google Scholar
9. Kim, S., Rhee, S. J., Li, X., Coleman, J. J., and Bishop, S., J. Electron. Mater. 28, 266 (1999).Google Scholar
10. Przybylińska, H., Kozanecki, A., Glukhanyuk, V., Jantsch, W., As, D. J., Lischka, K., Physica B, 308-310, 34 (2001).Google Scholar
11. Torvik, J. T., Qui, C. H., Feuerstein, R. J., Pankove, J. I., Navamar, F., J. Appl. Phys. 81, 6343 (1997).Google Scholar
12. Stevens, K. W. H., Proc. Phys. Soc. Lond. A65, 209 (1952).Google Scholar
13. Kingsley, J. D., Aven, M., Phys. Rev. Lett., 155, 236 (1967).Google Scholar