Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T05:10:15.289Z Has data issue: false hasContentIssue false

High Reflectance III-Nitride Bragg Reflectors Grown by Molecular Beam Epitaxy

Published online by Cambridge University Press:  03 September 2012

H. M. Ng
Affiliation:
Electrical and Computer Engineering Department and Center for Photonics Research, Boston University, 8 Saint Mary's St., Boston MA 02215, U.S.A. E-mail: [email protected]
T. D. Moustakas
Affiliation:
Electrical and Computer Engineering Department and Center for Photonics Research, Boston University, 8 Saint Mary's St., Boston MA 02215, U.S.A. E-mail: [email protected]
Get access

Abstract

Distributed Bragg reflector (DBR) structures based on AlN/GaN have been grown on (0001) sapphire by electron-cyclotron-resonance plasma-assisted molecular-beam epitaxy (ECR-MBE). The design of the structures was predetermined by simulations using the transmission matrix method. A number of structures have been grown with 20.5 – 25.5 periods showing peak reflectance ranging from the near-UV to the green wavelength regions. For the best sample, peak reflectance up to 99% was observed centered at 467 nm with a bandwidth of 45 nm. The experimental reflectance data were compared with the simulations and show excellent agreement with respect to peak reflectance, bandwidth of high reflectance and the locations of the sidelobes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S. and Fasol, G., The Blue Laser Diode, (Springer, Berlin, 1997).Google Scholar
2. Honda, T., Katsube, A., Sakaguchi, T., Koyama, F., and Iga, K., Jpn. J. Appl. Phys. 34, 3527 (1995).Google Scholar
3. Someya, T., Tachibana, K., Lee, J., Kamiya, T., and Arakawa, Y., Jpn. J. Appl. Phys. 37, L1424 (1998).Google Scholar
4. Song, Y.-K., Zhou, H., Diagne, M., Ozden, I., Vertikov, A, Nurmikko, A. V., Carter-Coman, C., Kern, R. S., Kish, F. A., and Krames, M. R., Appl. Phys. Lett. 74, 3441 (1999).Google Scholar
5. Singh, R., Doppalapudi, D., Moustakas, T.D., and Romano, L.T., Appl. Phys. Lett. 70, 1089 (1997).Google Scholar
6. Doppalapudi, D., Basu, S.N., Ludwig, K.F. Jr., and Moustakas, T.D., J. Appl. Phys. 84, 1389 (1998); D. Doppalapudi, S.N. Basu, and T.D. Moustakas, J. Appl. Phys. 85, 883 (1999).Google Scholar
7. Khan, M. Asif, Kuznia, J.N., Hove, J.M. Van and Olson, D.T., Appl. Phys. Lett. 59, 1449 (1991).Google Scholar
8. Someya, T. and Arakawa, Y., Appl. Phys. Lett. 73, 3653 (1998).Google Scholar
9. Langer, R., Barski, A., Simon, J., Pelekanos, N.T., Konovalov, O., Andre, R. and Dang, L.S., Appl. Phys. Lett. 74, 3610 (1999).Google Scholar
10. Ng, H.M., Doppalapudi, D., Iliopoulos, E., and Moustakas, T.D., Appl. Phys. Lett. 74, 1036 (1999) and erratum Appl. Phys. Lett. 74, 4070 (1999).Google Scholar
11. Fritz, I.J. and Drummond, T.J., Elec. Lett. 31, 68 (1995).Google Scholar
12. Macleod, H.A., Thin Film Optical Filters, 2nd ed. (McGraw-Hill, New York, 1986).Google Scholar
13. Born, M. and Wolf, E., Principles of Optics, 6th ed. (Pergamon, New York, 1980).Google Scholar
14. Ng, H.M., Doppalapudi, D., Korakakis, D., Singh, R. and Moustakas, T.D., J. Crys. Growth 190, 349 (1998).Google Scholar