Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-04T18:14:08.032Z Has data issue: false hasContentIssue false

High Quality Growth of SiO2 at 80° C by Electron Cyclotron Resonance (ECR) for Thin Film Transistors

Published online by Cambridge University Press:  17 March 2011

A. J. Flewitt
Affiliation:
Engineering Department, Cambridge UniversityTrumpington Street, Cambridge CB2 1PZ, U.K
D. Grambole
Affiliation:
Institute for Ion Beam Physics and Materials Science Rossendorf Research Centre, Dresden, Germany
U. Kreiβig
Affiliation:
Institute for Ion Beam Physics and Materials Science Rossendorf Research Centre, Dresden, Germany
J. Robertson
Affiliation:
Engineering Department, Cambridge UniversityTrumpington Street, Cambridge CB2 1PZ, U.K
W. I. Milne
Affiliation:
Engineering Department, Cambridge UniversityTrumpington Street, Cambridge CB2 1PZ, U.K
Get access

Abstract

Silicon dioxide (SiO2) films have been deposited at 80°C in an Electron Cyclotron Resonance (ECR) plasma reactor from a gas phase combination of He, O2 and SiH4. The ECR configuration provides a highly ionised plasma (∼1016 m−3) with low ion energies (∼10eV) that gives efficient dehydrogenation of the growing material whilst minimizing defect creation. The physical characterisation of the material gives a refractive index of 1.46, an etch rate in buffered HF below 3 nm/s and a hydrogen content of less than 2 at.%. Electrical tests reveal a resistivity in excess of 1014Ωcm, an average breakdown strength of 5 MV/cm, and fixed charge and interface state densities of 1011 cm−2 and 1012 eV−1cm−2 respectively. This has been achieved using a O2:SiH4 flow ratio ≍ 2:1.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gosain, D. P., Noguchi, T., Usui, S., Jpn. J. Appl. Phys. Pt. II, 39, 179, (2000)Google Scholar
[2] Batey, J., Tierney, E., J. Appl. Phys. 60, 3136, (1986)Google Scholar
[3] Sandoe, J.N., SID Digest, 20.1, (1998)Google Scholar
[4] Andosca, R.G., Varhue, W.J., Adams, E., J. Appl. Phys. Pt. II,. 72, 1126, (1992)Google Scholar
[5] Matsuo, S., Kiuchi, M., Jpn. J. Appl. Phys. 22, , L210, (1983)Google Scholar
[6] Herak, T. V., Chau, T.T., Thomson, D. J., Meija, S. R., Buchanan, D. A., Chao, K. C., J. Appl. Phys, 65, 2457, (1989)Google Scholar
[7] Lucovsky, G., Mantini, M.J., Srivastana, J.K., Irene, E.A., J. Vac. Sci. Technol. B, 5, 530, (1987)Google Scholar
[8] Pai, P.G., Chao, S.S., Takagi, Y., Lucovsky, G., J. Vac. Sci. Technol. A, 4, 689, (1986)Google Scholar
[9] Yuda, K., Tanabe, H., Sera, K., Okumura, F., MRS Symp. Proc., 508, 167, (1998)Google Scholar
[10] Young, N. D., Gill, A., Semicond. Sci. Tech., 7, 1103, (1992)Google Scholar
[11] Jiang, N., Hugon, M., Agius, B., Olivier, J., Puech, M., J. Appl. Phys. 76, 1847, (1994)Google Scholar