Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T04:14:39.526Z Has data issue: false hasContentIssue false

High Pressure-High Temperature Reactions in Xenon-Chlorine System

Published online by Cambridge University Press:  26 February 2011

Maddury Somayazulu
Affiliation:
[email protected], Carnegie Institution of Washington, Geophysical Laboratory, 5251 Broad Branch Rd. NW, Washington, VA, 20015, United States, (202)478-8911, (202)478-8901
Steven Gramsch
Affiliation:
[email protected], Carnegie Institution of Washington, Geophysical Laboratory, 5251 Broad Branch Rd. NW, Washington, VA, 20015, United States
Ho-Kwang Mao
Affiliation:
[email protected], Carnegie Institution of Washington, Geophysical Laboratory, 5251 Broad Branch Rd. NW, Washington, VA, 20015, United States
Russell Hemley
Affiliation:
[email protected], Carnegie Institution of Washington, Geophysical Laboratory, 5251 Broad Branch Rd. NW, Washington, VA, 20015, United States
Get access

Abstract

We present results of studies of the xenon-chlorine system to 60 GPa and temperature range 300 to 2000 K. Using a combination of Raman spectroscopy, infrared spectroscopy and synchrotron x-ray diffraction; we characterize the products of diamond cell experiments. In the 2-20 GPa pressure interval, we observe the formation of a deep red crystalline phase. Above 15 GPa, and at high temperature, a solid solution of Xe and Cl2 appears to form. Comparison of the ultraviolet-visible and infrared absorption measurements on the proposed alloy of Xe and Cl2 show that band edge moves into the visible range at high pressure

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Classen, H H, Selig, H, Malm, J G, Jl. Am. Chem. Soc., 84, 3592 (1962).Google Scholar
2. Nelson, L Y, G CPiementel, Inorg. Chem., 6, 1758 (1967).Google Scholar
3. Proserpio, D M, Hoffmann, R, Janda, K C, J. Am. Chem. Soc., 113, 7184 (1991).Google Scholar
4. Barnes, P N and Kushner, M J, J. Appl. Phys., 80, 5593 (1996).Google Scholar
5. Nakamura, I, Kannari, F, and Obara, M, Appl. Phys. Lett., 57, 2057 (1990).Google Scholar
6. Kooi, M E and Schouten, J A, Phys. Rev. B, 60, 12635 (1999).Google Scholar
7. Hemley, R J, Ann. Rev. Phys. Chem., 51, 763 (2000).Google Scholar
8. Iota, V and Yoo, C S, Phys. Rev. Lett., 86, 5922 (2001).Google Scholar
9. Elkridge, M D, Madden, P A and Frenkel, D, Nature, 365, 35 (1993).Google Scholar
10. Vos, W L, Finger, L W, Hemley, R J, Hu, J Z, Mao, H K and Schouten, J A, Nature, 358, 46 (1992).Google Scholar
11. Loubeyre, P, LeToullec, R and Pinceaux, J-P, Phys. Rev. Lett., 72, 1360 (1994).Google Scholar
12. Seidel, S and Seppelt, K, Science, 290, 117 (2000).Google Scholar
13. Agron, P A, Begun, B N and Levy, H I, Science, 139, 842 (1963).Google Scholar
14. Johannsen, P G and Holzapfel, W B, J. Phys. C: Solid State Phys. 16, L1177 (1983).Google Scholar
15. Cynn, H, Yoo, C S, Baer, B, Iota-Herbei, V, McMahan, A K, Nicol, M and Carlson, S, Phys. Rev. Lett., 86, 4552 (2001).Google Scholar
16. Fujihasa, H, Fujii, Y, Takemura, K and Shimomura, O, J. Phys. Chem. Solids, 56, 1439 (1995).Google Scholar