Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T03:18:42.660Z Has data issue: false hasContentIssue false

High Power 325 Light Emitting Diode Arrays by Flip-Chip Packaging

Published online by Cambridge University Press:  11 February 2011

Ashay Chitnis
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A.
Maxim Shatalov
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A.
Vinod Adivarahan
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A.
Jian Ping Zhang
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A.
Shuai Wu
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A.
Jie Sun
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A.
M. Asif Khan
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A.
Get access

Abstract

We report flip-chip 325 nm emission light emitting diodes over sapphire with dc powers as high as 0.84 mW at 180mA and pulse powers as high as 6.68 mW at 1A. These values to date are the highest reported powers for such short wavelength emitters. Our data shows the device output power under dc operation to be limited by the package heat dissipation. A study is presented to determine the role of thermal management in controlling the power output for the reported 325 nm ultraviolet light emitting diodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nishida, T., Saito, H., and Kobayashi, N., Appl. Phys. Lett. 78, 3927 (2001).Google Scholar
2. Kinoshita, , Hirayama, H., Ainoya, M., Aoyagi, Y., Hirata, A., Appl. Phys. Lett. 77, 175 (2000).Google Scholar
3. Otsuka, N., Tsujimura, A., Hasegawa, Y., Sugahara, G., Kume, M., Ban, Y., Jpn. J. Appl. Phys. 39, L445 (2000).Google Scholar
4. Iwaya, M., Terao, S., Sano, T., Takanami, S., Ukai, T., Nakamura, R., Kamiyama, S., Amano, H., Akasaki, I., Phys. Stat. Sol. (a) 188, 117 (2001).Google Scholar
5. Adivarahan, V., Chitnis, A., Zhang, J. P., Shatalov, M., Yang, J. W., Simin, G., Khan, M. Asif, Shur, M., Gaska, R., Appl. Phys. Lett. 79, 4240 (2001).Google Scholar
6. Khan, M. Asif, Adivarahan, V., Zhang, J. P., Chen, C., Kuokstis, E., Chitnis, A., Shatalov, M., Yang, J. W., Simin, G., Jpn. J. Appl. Phys. 40, L1308 (2001).Google Scholar
7. Zhang, J. P., Adivarahan, V., Wang, H. M., Fareed, Q., Koukstis, E., Chitnis, A., Shatalov, M., Yang, J. W., Simin, G., Khan, M. Asif, Shur, M., Gaska, R., Jpn. J. Appl. Phys. 40, L921 (2001).Google Scholar
8. Chitnis, A., Zhang, J. P., Adivarahan, V., Shuai, W., Sun, J., Shatalov, M., Yang, J. W., Simin, G., Khan, M. Asif, Jpn. J. Appl. Phys. 41, L450 (2002).Google Scholar
9. Adivarahan, V., Zhang, J., Chitnis, A., Shuai, W., Sun, J., Pachipulusu, R., Shatalov, M., Khan, M. Asif, Jpn. J. Appl. Phys. 41, L435 (2002).Google Scholar
10. Chitnis, A., Jason, S., Mandavilli, V., Pachipulusu, R., Wu, S., Gaevski, M., Adivarahan, V., Zhang, J. P., Khan, M. Asif, Sarua, A., Kuball, M., Appl. Phys. Lett. 81, 3491 (2002).Google Scholar
11. Zhang, J. P., Wang, H.M., Gaevski, M.E., Chen, C.Q., Fareed, Q., Yang, J.W., Simin, G., Khan, M. A., Appl. Phys. Lett. 80, 3542 (2002).Google Scholar
12. Chitnis, A., Adivarahan, V., Zhang, J. P., Wu, S., Sun, J., Pachipulusu, R., Mandavalli, V., Gaevski, M., Shatalov, M., and Khan, M. Asif, Electron. Lett. 25, 1709 (2002).Google Scholar