Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T21:50:38.320Z Has data issue: false hasContentIssue false

High Performance Magnets - Microstructure and Coercivity

Published online by Cambridge University Press:  21 February 2011

J. Fidler
Affiliation:
Vienna University of Technology, Institute of Applied and Technical Physics, Wiedner Hauptstr. 8-10, A-1040 Wien, Austria, http://atp6000.tuwien.ac.at/MAGNET/
S. Sasaki
Affiliation:
Vienna University of Technology, Institute of Applied and Technical Physics, Wiedner Hauptstr. 8-10, A-1040 Wien, Austria, http://atp6000.tuwien.ac.at/MAGNET/
E. Estevez-Rams
Affiliation:
Vienna University of Technology, Institute of Applied and Technical Physics, Wiedner Hauptstr. 8-10, A-1040 Wien, Austria, http://atp6000.tuwien.ac.at/MAGNET/
Get access

Abstract

The importance of newly developed permanent magnetic materials in many electro-, magnetomechanical and electronic applications can be attributed to the drastic improvement of the magnetic energy density product and coercive field. A systematic study has been undertaken in order to determine the influence of oxygen content on microstructure and coercivity of high remanence Nd2Fe14B based sintered magnets. The energy density product >400 kJ/m3 (50 MGOe) and the coercive field of 800 kA/m were obtained after a combination of rubber isostatic and transverse die pressing methods. Magnets of the composition Nd151−xFe78+xB6Cu0.03A10.7 [x= 0-2.5] were prepared using strip cast materials. The high oxygen content of the magnets was gradually decreased from values of 4000-6000 ppm to a value < 1000 ppm. Abnormal grain growth (AGG) of the 2:14:1 grains occurred preferentially in magnets with low oxygen content, thus the squareness of the demagnetisation curve drastically decreased. The oxygen content strongly affects the AGG and the magnets with higher oxygen content have the higher critical temperatures at which the AGG occurs. On the other hand, isotropic magnets tend to have the lower critical temperatures than anisotropic magnets by 10-20°C. In the second part of the paper examples of the influence of intergranular phases, grain size and grain shape observed by TEM on coercivity of sintered and melt-spun Nd-Fe-B magnets are compared.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Strnat, K. J, Hoffer, G., Oson, J. and Ostertag, W., J. Appl. Phys. 38, 1001 (1967).Google Scholar
[2] Sagawa, M., Fujimura, S., Togawa, N., Yamamoto, H. and Matsuura, Y., J. Appl. Phys. 55, 2083 (1984).Google Scholar
[3] Croat, J.J., Herbst, J.F., Lee, R.W. and Pinkerton, F.E., J. Appl. Phys. 55, 2078 (1984).Google Scholar
[4] Herbst, J.F. and Croat, J.J., J.Magn.Magn.Mat., 100, 57 (1991).Google Scholar
[5] Fidler, J. and Schrefl, T., J. Appl. Phys., 79, 5029 (1996).Google Scholar
[6] Fidler, J, “Rare earth intermetallic magnets”, Inst.Phys.Conf.Ser.No. 152, Section G: Magnetic Materials, Paper presented at the 11th Int. Conf. on Ternary & Multinary Compounds, ICTMC-1 1, Salford, UK, September 1997, (1998), 805813.Google Scholar
[7] Herbst, J.F., R2Fe14B materials: instrinsic properties and technological aspects, Rev. Modem Phys., 63, 819898 (1991).Google Scholar
[8] Buschow, K.H.J, (1988) Permanent magnet materials based on 3d-rich ternary compounds, in Ferromagnetic materials Vol.4. edited by Wohlfarth, E.P. and Buschow, K.H.J., Elsevier Science Publishers, Amsterdam, 1129.Google Scholar
[9] Cook, J.S. and Rossiter, P.L., Rare earth iron boron supermagnets, CRC Critical Reviews in Solid State and Materials Sciences 15, 509550 (1989).Google Scholar
[10] Buschow, K.H.J, (1997) Magnetism and processing of permanent magnet materials, in Handbook of Magnetic Materials Vol. 10. edited by Buschow, K.H.J., Elsevier Science Publishers, Amsterdam, 463593.Google Scholar
[11] Bernardi, J., Fidler, J. and Födermayr, F., IEEE Trans. Magn. 28, 2127 (1992).Google Scholar
[12] Bemardi, J and Fidler, J., J. Appl. Phys. 76, 6241 (1994).Google Scholar
[13] Hirose, Y., Hasegawa, H., Sasaki, S. and Sagawa, M., Proc. XV. Workshop on RareEarth Magnets and Applications, Dresden, 1998, Voll., p.7796.Google Scholar
[14] Sasaki, S., PhD Thesis, Vienna University of Technology, Austria, 1999.Google Scholar
[15] Rodewald, W., Wall, B. and Fernengel, W., IEEE Trans. Magn. 33, 3841 (1997).Google Scholar
[16] Endoh, M. and Shindo, M., Proc. 13th Int. Workshop on rare earth magnets and their applications, Birmingham, ed. by Manwaring, et al. , Vol. 1, (1994) 397.Google Scholar
[17] Bernardi, J., Fidler, J., Seeger, M. and KronmUller, H., IEEE Trans. Magn. 29, 2773 (1993).Google Scholar
[18] Bernardi, J. and Fidler, J., J. Appl. Phys. 76, 6241 (1994).Google Scholar
[19] Schrefl, T. and Fidler, J., J.Magn.Magn.Mat. 177–181, 970975 (1998).Google Scholar
[20] Croat, J.J., J. Less-Common Met., 148, 7 (1989).Google Scholar
[21] Mishra, R.K., J. Appl. Phys., 62, 967 (1987).Google Scholar
[22] Harris, I. R, 1992, Proceedings of the XII. International Workshop on Rare Earth Magnets and their Appl., ed. by Street, B., The University of Western Australia, 347.Google Scholar
[23] Nakayama, R., Takeshita, T., Itakura, M., Kuwano, N. and Oki, K., JAP. 76, 412 (1994).Google Scholar
[24] Uehara, M., Tomizawa, H., Hirosawa, S., Tomida, T. and Maehara, Y., IEEE Trans. Magn. 29, 2770 (1993).Google Scholar
[25] Sagawa, M., Hirosawa, S., Yamamoto, H., Fujimura, S. and Matsuura, Y., Jpn. J. Appl. Phys., 26 785 (1987).Google Scholar
[26] Otsuki, E., Otsuka, T. and Imai, T., Proc. 11th Int. Workshop on rare earth magnets and their applications, Pittsburgh, ed. by Shankar, , Vol. 1, (1990) 328.Google Scholar
[27] Sagawa, M. and Nagata, H., IEEE Trans Magn. 29, 2747 (1993).Google Scholar
[28] Sagawa, M., Nagata, H. Itatani, O. and Watanabe, W., Proc. 13th Int. Workshop on rare earth magnets and their applications, Birmingham, , ed. by Manwaring et al, Suppl., (1994) 13.Google Scholar
[29] Kim, A.S., Camp, F.E. and Stadelmaier, H.H., J. Appl. Phys. 76, 6265 (1994).Google Scholar
[30] Chin, T.S., Hung, M.P., Tsai, D.S., Wu, K.F. and Chang, W.C., J. Appl. Phys. 64, 5531 (1988).Google Scholar
[31] Femengel, W., Lehnert, A., Katter, M., Rodewald, W. and Wall, B., J.Magn.Magn.Mat., 157/158, 19 (1996).Google Scholar