Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T09:47:00.902Z Has data issue: false hasContentIssue false

High Performance HFET Devices on Sapphire and SiC: Passivation with AlN

Published online by Cambridge University Press:  11 February 2011

Jennifer A. Bardwell
Affiliation:
National Research Council Canada, Institute for Microstructural Sciences, Ottawa, ON, K1A 0R6, Canada
Ying Liu
Affiliation:
National Research Council Canada, Institute for Microstructural Sciences, Ottawa, ON, K1A 0R6, Canada
James B. Webb
Affiliation:
National Research Council Canada, Institute for Microstructural Sciences, Ottawa, ON, K1A 0R6, Canada
Haipeng Tang
Affiliation:
National Research Council Canada, Institute for Microstructural Sciences, Ottawa, ON, K1A 0R6, Canada
Stephen J. Rolfe
Affiliation:
National Research Council Canada, Institute for Microstructural Sciences, Ottawa, ON, K1A 0R6, Canada
Jean Lapointe
Affiliation:
National Research Council Canada, Institute for Microstructural Sciences, Ottawa, ON, K1A 0R6, Canada
Get access

Abstract

AlGaN/GaN two dimensional electron gas (2DEG) heterostructures were grown by ammonia-MBE on sapphire and SiC substrates. Devices fabricated from these optimized HFET layers, with optically defined gates showed excellent characteristics, e.g. a maximum drain current density of 1.3 A/mm, maximum transconductance of 220 mS/mm, fT of 15.6 GHz and fMAX of 58.1 GHz was measured for devices with 0.9 μm gate length and 40 μm gate width. Shorter gate length devices exhibited higher frequency responses: fT of 68 GHz and fMAX of 125 GHz for 0.25 μm gate length and fT of 103 GHz and fMAX of 170 GHz for 0.15 μm gate length. However, these devices showed “current collapse” when subjected to load pull measurements. Current collapse was also observed in sequentially repeated DC measurements in the dark, both on sapphire and SiC substrates, although the degree of collapse varied greatly from one wafer to another. One method of reducing the current collapse was to apply a thin (100 - 6000 Å) magnetron sputtered AlN passivation layer (over the gates) or a 500 Å layer under the gates so that MISFET devices were obtained. The electrical characteristics of the passivated and unpassivated devices are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Micovic, M., Nguyen, N. X., Janke, P., Wong, W.-S., Hashimoto, P., McCray, L.-M., and Nguyen, C., Electron. Lett. 36, 358 (2000).Google Scholar
2. Lu, W., Yang, J., Khan, M. A., Adesida, I., IEEE Trans. on Electron Dev. 48, 581 (2001).Google Scholar
3. Kumar, V., Kuliev, A., Schwindt, R., Simin, G., Yang, J., Khan, M. Asif, and Adesida, I., Phys. Stat. Sol. (a) 194, 456 (2002).Google Scholar
4. Eastman, L. F., Tilak, V., Smart, J., Green, B. M., Chumbes, L. M., Dimitrov, R., Kim, H., Ambacher, O. S., Weimann, N., Prunty, T., Murphy, M., Schaff, W. J. and Shealy, J. R., IEEE Trans. Electron Dev. 2001, 48, 479 (2001).Google Scholar
5. Arulkumaran, S., Egawa, T., Ishikawa, H. and Jimbo, T., Appl. Phys. Lett. 81, 3073 (2002).Google Scholar
6. Webb, J. B., Tang, H., Bardwell, J. A., Liu, Y., Lapointe, J. and MacElwee, T., Phys. Stat. Sol. (a) 194, 439 (2002).Google Scholar
7. Daumiller, I., Theron, D., Gaquiere, C., Vescan, A., Dietrich, R., Wieszt, A., Leier, H., Ventury, R., Mishra, U. K., Smorchkova, I. P., Keller, S., Nguyen, N. X., Nguyen, C. and Kohn, E., IEEE Electron. Dev. Lett. 22, 62 (2001).Google Scholar
8. Mizutani, T., Ohno, Y., Akita, M., Kishimoto, S. and Maezawa, K., Phys. Stat. Sol. (a) 914, 447 (2002).Google Scholar
9. Tang, H. and Webb, J. B., Appl. Phys. Lett. 743, 2373 (1999).Google Scholar
10. Webb, J., Tang, H., Bardwell, J. A., Rolfe, S., Liu, Y., Lapointe, J., Marshall, P. and MacElwee, T.W., Phys. Stat. Sol. (a) 188, 271 (2001).Google Scholar
11. Bardwell, J. A., Foulds, I., Lamontagne, B., Tang, H., Webb, J. B., Marshall, P., Rolfe, S. J., Stapledon, J., and MacElwee, T. W., J. Vac. Sci. Technol. A, 18, 750753 (2000).Google Scholar
12. Bardwell, J. A., Sproule, G. I., Liu, Y., Tang, H., Webb, J. B., Fraser, J. and Marshall, P., J. Vac. Sci. Technol. B, 20(4), 14441447 (2002).Google Scholar
13. Liu, Y., Bardwell, J. A., McAlister, S. P., Rolfe, S., Tang, H., and Webb, J. B., Phys. Stat. Sol, accepted.Google Scholar
14. Brunner, D., Angerer, H., Bustarret, E., Freudenberg, F., Hopler, R., Dimitrov, R., Ambacher, O. and Stutzmann, M., J. Appl. Phys. 82, 5090 (1997).Google Scholar
15. Kusaka, K., Taniguchi, D., Hanabusa, T. and Tominaga, K., Vacuum, 66, 441 (2002).Google Scholar