Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T23:38:58.106Z Has data issue: false hasContentIssue false

High Optical Quality GaN Nanopillars Grown on (111) Si Using Molecular Beam Epitaxy

Published online by Cambridge University Press:  01 February 2011

Agam Prakash Vajpeyi
Affiliation:
[email protected], Institute of Electronic Structure and Laser (IESL), FORTH, Microelectronics Research Center, Herakilon-Crete, Gr, P.O. Box 2208, 71110,, Herakilon, 71110, Greece, +302810394145, +302810394145
G. Tsiakatouras
Affiliation:
[email protected], Institute of Electronic Structure and Laser (IESL), FORTH, Microelectronics Research Center, and Department of Physics, University of Crete, Greece, Herakilon, 71110, Greece
A Adikimenakis
Affiliation:
[email protected], Institute of Electronic Structure and Laser (IESL), FORTH, Microelectronics Research Center, and Department of Physics, University of Crete, Greece, Herakilon, 71110, Greece
K. Tsagaraki
Affiliation:
[email protected], Institute of Electronic Structure and Laser (IESL), FORTH, Microelectronics Research Center, and Department of Physics, University of Crete, Greece, Herakilon, 71110, Greece
M Androulidaki
Affiliation:
[email protected], Institute of Electronic Structure and Laser (IESL), FORTH, Microelectronics Research Center, and Department of Physics, University of Crete, Greece, Herakilon, 71110, Greece
Alexandros Georgakilas
Affiliation:
[email protected], Institute of Electronic Structure and Laser (IESL), FORTH, Microelectronics Research Center, and Department of Physics, University of Crete, Greece, Herakilon, 71110, Greece
Get access

Abstract

The spontaneous growth of GaN nanopillars on (111) Si by plasma assisted molecular beam epitaxy has been investigated. The growth of GaN nanopillars on Si is driven by the lattice mismatch strain energy on Si and the high surface energy of the nitrogen stabilized (0001) GaN surface. A higher growth rate of nanopillars compared to a compact GaN film suggests the diffusion of Ga atoms from the uncovered substrate areas to the nucleated GaN nanopillars. The GaN nanopillars were characterized by field-emission scanning electron microscopy (FE-SEM), photoluminescence, and micro Raman spectroscopy. SEM image revealed that average diameter of GaN nanopillars was in the range of 70-100nm and an average height of 600nm. The photoluminescence (PL) spectra indicate the good emission property of the nanopillars. The low temperate PL spectrum exhibited an emission peak at 3.428eV besides a sharp excitonic peak. PL and Raman spectra indicate that GaN nanopillars are fully relaxed from lattice and thermal strain.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dimoulas, A. Tzanetakis, P. Georgakilas, A. Glembocki, O.J. and Christou, A. J. Appl. Phys. 67, pp. 43894392 (1990)Google Scholar
2. Georgakilas, A. Dimoulas, A. Christou, A. and Stoemenos, J. J. Mater. Research 7, pp. 21942204 (1992)Google Scholar
3. Nakamura, S. Fasol, G. and Pearton, S.J. The Blue Laser Diode: The Complete Story, Springer Verlag, 2nd Edition (2000)Google Scholar
4. Georgakilas, A. Deligeorgis, G. Aperathitis, E. Cengher, D. and Hatzopoulos, Z. Alexe, M. Dragoi, V. Gösele, U. Kyriakis-Bitzaros, E. D., Minoglou, K. and Halkias, G. Appl. Phys. Lett 81, 5099 (2002)Google Scholar
5. Glas, F. Phys. Rev. B 74, 121302(R) (2006).Google Scholar
6. Qian, F. Li, Y. Gradecak, S. Wang, D. L. Barrelet, C. J. and Lieber, C. M. Nano Lett. 4, 1975 (2004).Google Scholar
7. Su, J. et al. Appl. Phys. Lett. 86, 13105 (2005).Google Scholar
8. Calarco, R. Marso, M. Richter, T. Aykanat, A. I. Meijers, R. Hart, A. V. Stoica, T. and Luth, H. Nano Lett. 5, 981 (2005).Google Scholar
9. Kim, Y. H. Lee, J. Y. Lee, S. H. Oh, J. E. and Lee, H. S. Appl. Phys. A 80, 1635 (2005).Google Scholar
10. Jensen, L. E. Björk, M. T., Jeppesen, S. Persson, A. I. Ohlsson, B. J. and Samuelson, L. Nano Lett. 4, 1961 (2004).Google Scholar
11. Morales, A. M. and Lieber, C. M. Science 279, 208 (1998).Google Scholar
12. Duan, X. F. and Lieber, C. M. J. Am. Chem. Soc. 122, 188 (2000).Google Scholar
13. Calarco, R. Meijers, R. J. Debnath, R. K. Stoica, T. Sutter, E. and Luth, H. Nano Lett. 7, 2248 (2007).Google Scholar
14. Meijers, R. Richter, T. Calarco, R. Stoica, T. Bochem, H. P. Marso, H. and Luth, H, J. Cryst. Growth 289, 381 (2006).Google Scholar
15. Bertness, K. A. Roshko, A. Sanford, N.A. Barker, J. M. and Davydov, A. V. J. Cryst. Growth 287, 522 (2006).Google Scholar
16. Park, Y. S. Lee, S. H. Ob, J.E. Park, C. M. and Kang, T. W. J. Cryst. Growth 282 313 (2005).Google Scholar
17. Iliopoulos, E Adikimenakis, A Dimakis, E Tsagaraki, K Konstantinidis, G Georgakilas, A J. Cryst. Growth 278 426 (2005)Google Scholar
18. Kayambaki, M Callec, R Constantinidis, G Papavassiliou, Ch., Loechtermann, E Krasny, H Papadakis, N Panayotatos, P Georgakilas, A J. Cryst. Growth 157 300 (1995)Google Scholar
19. Grandal, J. Sánchez-García, M. A., Calleja, E. Luna, E. and Trampert, A. Appl. Phys. Lett. 91, 021902 (2007).Google Scholar
20. Calleja, E. Sanchez-Garcõa, M.A., Calle, F. Naranjo, F.B. Munoz, E. Jahn, U. Ploog, K. Sanchez, J. Calleja, J.M. Saarinen, K. Hautojarvi, P. Mat. Sci. Eng. B 82 (2001)Google Scholar
21. Chen, Hung-Ying, Lin, Hon-Way, Shen, Chang-Hong, and Gwo, Shangjr, Appl. Phys. Lett. 89, 243105, (2006)Google Scholar
22. Calleja, E. Sánchez-García, M. A., Sánchez, F. J., Calle, F. Naranjo, F. B. Muñoz, E., Jahn, U. and Ploog, K. Phys. Rev. B 62, 16826 (2000)Google Scholar
23. Wang, X Sun, X Fairchild, M Hersee, S.D., Appl. Phys. Lett. 89, 233115 (2006)Google Scholar
24. Hsu, Wei-Tse, Lin, Kuo-Feng, and Hsieh, Wen-Feng, Appl. Phys. Lett. 91, 181913, (2007)Google Scholar
25. Tiginyanu, I.M. Ursaki, V. V. Zalamai, V. V. Langa, S. Hubbard, S. Pavlidis, D. and Foll, H. Appl. Phys. Lett. 83, 1551 (2003).Google Scholar
26. Varshni, Y. P. Physica 34, 149 (1967).Google Scholar
27. Park, C. M. Park, Y. S. Im, Hyunsik and Kang, T. W. Nanotechnology 17, 952, (2006)Google Scholar
28. Wang, L. S. Zang, K. Y. Tripathy, S. and Chua, S. J. Appl. Phys. Lett. 85, 5881 (2004)Google Scholar
29. Arora, A. K. Rajalakshmi, M. Ravindran, T. R. and Sivasubramanian, V. J. Raman Spectrosc, 38: 604617 (2007)Google Scholar