Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T13:29:49.635Z Has data issue: false hasContentIssue false

High Optical Absorption of Indium Sulfide Nanorod Arrays Formed by Glancing Angle Deposition

Published online by Cambridge University Press:  31 January 2011

Mehmet Cansizoglu
Affiliation:
[email protected]@gmail.com, University of Arkansas at Little Rock, Applied Science, Little Rock, Arkansas, United States
Robert Engelken
Affiliation:
[email protected], Arkansas State University, Electrical Engineering Program, Jonesboro, Arkansas, United States
Hye-Won Seo
Affiliation:
[email protected], University of Arkansas at Little Rock, Department of Physics and Astronomy, Little Rock, Arkansas, United States
Tansel Karabacak
Affiliation:
[email protected], University of Arkansas at Little Rock, Applied Science, Little Rock, Arkansas, United States
Get access

Abstract

Indium (III) sulfide has recently attracted much attention due to its potential in optical sensors as a photoconducting material and in photovoltaic applications as a wide direct bandgap material. On the other hand, optical absorption properties are key parameters in developing highly photosensitive photodetectors and high efficiency solar cells. We show that indium sulfide nanorod arrays produced by glancing angle deposition techniques have superior absorption and low reflectance properties compared to conventional flat thin film counterparts. We observed an optical absorption value of approximately 96% for nanorods, in contrast to 80% for conventional amorphous-to-polycrystalline thin films of indium sulfide. A photoconductivity response was also observed in the nanorod samples, whereas no measurable photoresponse was detected in conventional thin films. We give a preliminary description of the enhanced light absorption properties of the nanorods by using Shirley-George Model that predicts enhanced diffuse scattering and reduced reflection of light due the rough morphology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kim, W.T; Lee, W.S; Chung, C.S, Kim, C.D, Journal of Applied Physics, 1988, 63, 54725475 Google Scholar
2. Kuveshni, G., Smyth-Boyle, D., O'brien, P., Mat. Res. Soc. Symp. Proc. 2002, 692, H8.14 Google Scholar
3. Mathew, M, Sudha Kartha, C., Vijayakumar, K. P., Advances in Energy Res. (AER-2006) 217221 Google Scholar
4. Amlouk, M., Ben Said, M. A., Kamoun, N., Belgacem, S., Brunet, N., Jpn. J. Appl. Phys., Part 1 1999, 38, 2630 Google Scholar
5. O'Brien, P., Octway, D. J., Walsh, J. R., Thin Solid Films 1998, 315, 5761.Google Scholar
6. Ranjith, R., John, T T, Sudha Kartha, C., Vijayakumar, K.P., Abe, T., Kashiwaba, Y., Materials Research Bulletin, 2005, 40, 6, 15 10181023 Google Scholar
7. Yoosuf, R., Jayaraj, M. K., Solar Energy Materials & Solar Cells, 2005, 89, 8594 Google Scholar
8. Rehwald, W., Harbeke, G., J. Phys. Chem Solids, 1965, 26, 13091318 Google Scholar
9. Diehl, R., Nitsche, R., J. Crystal Growth, 1975, 28, 306310.Google Scholar
10. Allsop, N.A., Schönmann, A., Belaidi, A., Muffler, H.J. Mertesacker, B., Bohne, W., Strub, E., Röhrich, J., Lux-Steiner, M.C., Fischer, Ch. H., Thin Solid Films 2006, 513, 5256 Google Scholar
11. Barreau, N., Mokrani, A., Couzinié-Devy, F., Kessler, J., Thins Solid Films, 2009, 517, 23162319 Google Scholar
12. Timoumi, A., Bouzouita, H., Brini, R., Kanzari, M. Rezig, B.. “Optimization of annealing conditions of In2S3 thin films deposited by vacuum thermal evaporationApplied Surface Science 2006, 253 306310 Google Scholar
13. Bouabid, K., Ihlal, A., Outzourhit, A., Ameziane, E. L., Active and Passive Elec Components, 2004 27, 207214 Google Scholar
14. John, T T, Sudha Kartha, C., Vijayakumar, K.P., Abe, T., Kashiwaba, Y., Applied Surface Sci 2005, 252, 13601367 Google Scholar
15. Ratheesh Kumar, M., John, T T, Sudha Kartha, C., Vijayakumar, K.P., Abe, T. Kashiwaba, Y., J. of Mat. Science, 2006, 41, 55195525 Google Scholar
16. Barreau, N., Marsillac, S., Bernède, J. C., Barreau, A., Applied Surface Science 2000, 161, 2026 Google Scholar
17. Naghavi, N., Spiering, S., Powalla, M., Cavana, B. Lincot, D., Prog. Photo.v Res. Appl. 2003, 11, 437443.Google Scholar
18. Hariskos, D., Ruckh, M., Rühle, U., Walter, T., Schock, H., Sol. Ener Matr. Sol. Cell 1996, 41/42, 345353 Google Scholar
19. Nakada, T and Mizutani, M., Jpn J Appl. Phys, 2002, 41 165.Google Scholar
20. Barreau, N., Bernède, J. El Maliki, H., Marsillac, S., Castel, X. Pinel, J., Solid State Comm 2002, 122 445450 Google Scholar
21. Xi, Q., Schubert, M. F., Kim, J. K., Schubert, E. F., Chen, M., Lin, S.Y., Liu, W. Nature Phot.; 2007, 1, 3, 176179.Google Scholar
22. Xi, J.Q., Kim, J. K., Schubert, E. F., Ye, D., Lu, T.M., Lin, S.Y, Juneja, J. S., Opt. Lett. 2006, 31, 601603.Google Scholar
23. Kivaishi, R. T., Thin solid Films, 1982, 97, 153163 Google Scholar
24. Tyagi, P. j., Vedeshwar, A. G., Bull. Mater. Sci. 2001, 24, 297.Google Scholar
25. Shirley, L. G., George, N., Appl. Opt. 1988, 27, 18501861 Google Scholar