Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T05:31:30.298Z Has data issue: false hasContentIssue false

High Electron Mobility W-doped In2O3 Thin Films

Published online by Cambridge University Press:  26 February 2011

Paul F. Newhouse
Affiliation:
[email protected], Oregon State University, Chemistry, United States
Cheol-Hee Park
Affiliation:
[email protected], Oregon State University, Chemistry, United States
Douglas A. Keszler
Affiliation:
[email protected], Oregon State University, Chemistry, United States
Janet Tate
Affiliation:
[email protected], Oregon State University, Physics, United States
Peter S. Nyholm
Affiliation:
[email protected], Hewlett-Packard Company, United States
Get access

Abstract

High electron mobility thin films of In2−xWxO3+d (0 ≤ × ≤ 0.075) were prepared by pulsed laser deposition. The highest mobility polycrystalline and textured films show mobility >110 cm2/Vs on both amorphous SiO2 and single crystal yttria-stabilized zirconia substrates. The carrier density is in the range 1−3 × 1020 cm−3 at room temperature. The W dopant concentration for films with optimized electrical properties was x ∼ 0.03.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ju, H., Hwang, S., Jeong, C., Park, C., Jeong, E., and Park, S., J. Kor. Phys. Soc. 44, 956 (2004).Google Scholar
2 Yoshida, Y., Warmsingh, C., Gessert, T. A., Perkins, J. D., Ginley, D. S., and Coutts, T. J., Mat. Res. Soc. Symp. Proc. 747, 207 (2003).Google Scholar
3 Abe, Y., United States Patent Application 20040013899.Google Scholar
4 van Hest, M. F. A. M., Dabney, M. S., Perkins, J. D., Ginley, D. S., and Taylor, M. P., Appl. Phys. Lett. 87, 032111 (2005).Google Scholar
5 Newhouse, P. F., Park, C.-H., Keszler, D. A., Tate, J., and Nyholm, P. S., Appl. Phys. Lett. 87, 112108 (2005).Google Scholar
6 Coutts, T. J., Young, D. L., and Li, X., Mat. Res. Soc. Symp. Proc. 623, 199 (2000).Google Scholar
7 Meng, Y., Yang, X., Chen, H., Shen, J., Jiang, Y., Zhang, Z., and Hua, Z., Thin Solid Films 394, 219 (2001).Google Scholar
8 Yoshida, Y., Wood, D., Gessert, T. A., and Coutts, T. J., Appl. Phys. Lett. 84, 2097 (2004).Google Scholar
9 Warmsingh, C., Yoshida, Y., Readey, D. W., Teplin, C. W., Perkins, J. D., Parilla, P. A., Gedvilas, L. M., Keyes, B. M., and Ginley, D. S., J. Appl. Phys. 95, 3831 (2004).Google Scholar
10 Ohta, H., Orita, M., Hirano, M., Tanji, H., Kawazoe, H., and Hosono, H., Appl. Phys. Lett. 76, 2740 (2000).Google Scholar
11 Yoshida, Y., Gessert, T. A., Perkins, C. L., and Coutts, T. J., J. Vac. Sci. Technol. 21 1092 (2003).Google Scholar
12 JCPDS Powder Diffraction File, No. 71–2195 (1997).Google Scholar
13 Laux, S., Kaiser, N., Zoller, A., Gotzelmann, R., Lauth, H., and Bernitzki, H., Thin Solid Films 335, 1 (1998).Google Scholar
14 Burstein, E., Phys. Rev. 93, 632 (1954).Google Scholar
15 Moss, T. S., Proc. Phys. Soc. London Ser. B 67, 775 (1954).Google Scholar
16 Hamberg, I. and Granqvist, C. G., J. Appl. Phys. 60, R123 (1986).Google Scholar