Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T13:25:16.474Z Has data issue: false hasContentIssue false

High Electron Gain from Forests of Multi-Walled Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Mario Michan
Affiliation:
[email protected], The University of British Columbia, Department of Electrical and Computer Engineering, Vancouver, Canada
Alireza Nojeh
Affiliation:
[email protected], The University of British Columbia, Department of Electrical and Computer Engineering, Vancouver, Canada
Get access

Abstract

Carbon nanotubes are attractive candidates for electron field-emitters due to their high aspect ratio, mechanical stability, and electrical conductivity. It has previously been shown that an electron beam hitting the tip of a carbon nanotube biased near the threshold of field-emission can stimulate the emission of a large number of electrons from the nanotube tip. Here we report on similar experiments on arrays of free-standing multi-walled carbon nanotubes (nanotube forests) interacting with a scanning electron microscope's primary beam. Electron gains of up to 19,000 were obtained. This can enable applications such as electron detection and multiplication, and vacuum transistors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Zheng, X. Doorn, M. J. Liao, S. K. Zhao, X. Z. Akhadov, Y. H. Hoffbauer, E. A. Roop, M.A. et al. , Nature Materials 3, 10 673 (2004).Google Scholar
2 Waser, R. Nanoelectronics and Information Technology, (Wiley-vch, Weinheim, 2005) pp. 240.Google Scholar
3 , Chernozatonskii, Gulyaev, Y. V. Kosakovskaya, Z. Y. Sinitsyn, N. I. Torgashov, G.V. YZakharchenko, u. F. Fedorov, E. A. Val'chuk, V. P., Chem. Phys. Lett. 233, 63 (1995).Google Scholar
4 Heer, W. A. de, Chatelain, A. Ugarte, D. Science 270, 1179 (1995).Google Scholar
5 Rinzler, L. A. Rinzler, A. G. Hafner, J. H. Nikolaev, P. Lou, L. Kim, S. G. Tomanek, D. Nordlander, P. Colbert, D. T. Smalley, R. E. Science 269, 1550 (1995).Google Scholar
6 Brintlinger, T. Chen, Y.F. Durkop, T. Cobas, E. Fuhrer, M.S. Appl Phys Lett. 81, 2454 (2002).Google Scholar
7 Homma, Y. Suzuki, S. Kobayashi, Y. Nagase, M. Takagi, D., Appl Phys Lett. 84, 1750 (2004).Google Scholar
8 Wong, W. K. Nojeh, A. Pease, R. F. W. Scanning 28, 219 (2006).Google Scholar
9 Finnie, P. Kaminska, K. Homma, Y. Austing, D. G. Lefebvre, J. Nanotechnology 19, 335202-1 (2008).Google Scholar
10 Alam, M. K. Eslami, S. P. Nojeh, A. Physica E42, 124 (2009).Google Scholar
11 Nojeh, A. Wong, W.K. Baum, A. W. Pease, R. F. Dai, H. Applied Physics Letters 85, 112 (2004).Google Scholar
12 Nojeh, A. Wong, W.K. Yieh, E. Pease, R. F. Dai, H. Journal of Vacuum Science and Technology B22, 3124 (2004).Google Scholar
13 Nojeh, A. Shan, B. Cho, K. Pease, R.F. W. Physical Review Letters 96, 056802 (2006).Google Scholar
14 Kim, C. D. Jang, H. S. Lee, S. Y. Lee, H. R. Roh, Y. S. Rhee, I.S. Lee, E. W. Yang, H. S. Kim, D. H. Nanotechnology 17, 5180 (2006).Google Scholar
15 Yu, S. Yi, W. Kim, W. S. Lee, J. Heo, J. Lee, C.S. Yoo, J.B. Lee, Y.H. Kim, J. M.. Journal of Applied. Physics 89, 4091 (2001).Google Scholar
16 Kyriakou, I. Emfietzoglou, D. Garcia-Molina, R., Abril, I. and Kostarelos, K. Applied Physics Letters 94, 263113 (2009).Google Scholar
17 Michan, M. Yaghoobi, P. Wong, B. and Nojeh, A. Physical Review B81 195438 (2010).Google Scholar
18 Sedra, A. S. Smith, K. Microelectronic Circuits, (Oxford University Press, New York, 1998) pp 228.Google Scholar
19 Makimoto, T. Kumakura, K. Kobayashi, N. Applied Physics Letters 83, 1035 (2003).Google Scholar
20 Moore, J. Davis, C. Coplan, M. Building Scientific Apparatus, (ABP, Cambridge, 2003) pp 390.Google Scholar