No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
Amorphous hydrogenated p-i-n diodes submitted to a high reverse bias for a long period of time undergo a metastable evolution which tends to improve their properties. A forming procedure based on this effect has been developed and leads to a significant decrease of the reverse current and increase of the breakdown voltage. In this paper, the mechanisms underlying this forming process have been investigated using the Constant Photocurrent Method (CPM), (I-V) characteristics and Spectral Response under reverse bias. The effects of annealing and current induced defect creation have been studied. The forming process is found to be most consistent with a metastable increase in the dopant activation of the p-layer and a small decrease of the density of states in the i-layer.