Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T05:30:09.870Z Has data issue: false hasContentIssue false

Hierarchically Nanostructured Zeolites of Tunable Porosities with Aerogel Templating

Published online by Cambridge University Press:  28 January 2011

Yousheng Tao
Affiliation:
Institute of Carbon Science and Technology, Shinshu University, Nagano 380-8553, Japan
Morinobu Endo
Affiliation:
Institute of Carbon Science and Technology, Shinshu University, Nagano 380-8553, Japan
Katsumi Kaneko
Affiliation:
Institute of Carbon Science and Technology, Shinshu University, Nagano 380-8553, Japan
Get access

Abstract

We present the synthesis of resorcinol-formaldehyde aerogels and carbon aerogels of different nanoporosities, emphasizing on the recent developments in fabrication pathways of lower cost. Recent results showed a simple way to the production of highly nanoporous carbon xerogels. While using an approach combined colloidal silica nanocasting and carbon dioxide supercritical drying, hydrophilicity-controlled carbon aerogels with high mesoporosity were synthesized. Then, we demonstrate the functions of these aerogels for template synthesis of hierarchically nanostructured zeolites having micropores and mesopores.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Corma, A., Chem. Rev. 97, 2373 (1997).10.1021/cr960406nGoogle Scholar
2. Davis, M. E., Nature 417, 813 (2002).10.1038/nature00785Google Scholar
3. de Jong, K. P. and Geus, J. W., Catal. Rev. - Sci. Eng. 42, 481 (2000).10.1081/CR-100101954Google Scholar
4. Tao, Y., Kanoh, H., Abrams, L. and Kaneko, K., Chem. Rev. 106, 896 (2006).10.1021/cr040204oGoogle Scholar
5. Egeblad, K., Christensen, C. H., Kustova, M. and Christensen, C. H., Chem. Mater. 20, 946 (2008)10.1021/cm702224pGoogle Scholar
6. Jacobsen, C. J. H., Madsen, C., Houzvicka, J., Schmidt, I. and Carlsson, A., J. Am. Chem. Soc. 122, 7116 (2000).10.1021/ja000744cGoogle Scholar
7. Christensen, C. H., Johannsen, K., Schmidt, I. and Christensen, C. H., J. Am. Chem. Soc. 125, 13370 (2003).10.1021/ja037063cGoogle Scholar
8. Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O. and Ryoo, R., Nature 461, 246 (2009).10.1038/nature08288Google Scholar
9. Groen, J. C., Bach, T., Ziese, U., Paulaime-van Donk, A. M., de Jong, K. P., Moulijn, J. A., Pérez-Ramírez, J. J. Am. Chem. Soc. 127, 10792 (2005).10.1021/ja052592xGoogle Scholar
10. Tao, Y., Noguchi, D., Yang, C.-M., Kanoh, H., Tanaka, H., Yudasaka, M., Iijima, S. and Kaneko, K., Langmuir 23, 9155 (2007).10.1021/la701660wGoogle Scholar
11. Tao, Y., Endo, M. and Kaneko, K., J. Am. Chem. Soc. 131, 904 (2009).10.1021/ja808132uGoogle Scholar
12. Tao, Y., Endo, M., Inagaki, M. and Kaneko, K., J. Mater. Chem. 21, 313 (2011).10.1039/C0JM01830AGoogle Scholar
13. Pekala, R. W. and Alviso, C. T., Mater. Res. Soc. Symp. Proc. 270, 3 (1992).10.1557/PROC-270-3Google Scholar
14. Tao, Y., Endo, M., Ohsawa, R., Kanoh, H. and Kaneko, K., Appl. Phys. Lett. 93, 193112 (2008).10.1063/1.2976684Google Scholar
15. Tao, Y., Kanoh, H. and Kaneko, K., J. Am. Chem. Soc. 125, 6044 (2003).10.1021/ja0299405Google Scholar
16. Tao, Y., Kanoh, H. and Kaneko, K., J. Phys. Chem. B 107, 10975 (2003); Langmuir 21, 504(2005).Google Scholar