Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T04:30:35.719Z Has data issue: false hasContentIssue false

HfO2-based Thin Films Deposited by RF Magnetron Sputtering

Published online by Cambridge University Press:  31 January 2011

Larysa Khomenkova
Affiliation:
[email protected], CIMAP, UMR CNRS 6252, ENSICAEN, Caen, France
Christian Dufour
Affiliation:
[email protected], CIMAP, UMR CNRS 6252, ENSICAEN, Caen, France
Pierre-Eugène Coulon
Affiliation:
[email protected], CEMES/CNRS, Toulouse, France
Caroline Bonafos
Affiliation:
[email protected], CEMES/CNRS, Toulouse, France
Fabrice Gourbilleau
Affiliation:
[email protected], CIMAP, 6, Blvd Maréchal Juin, Caen, 14050, France
Get access

Abstract

HfO2-based layers prepared by RF magnetron sputtering were studied by X-ray diffraction, infrared absorption spectroscopy and transmission electron microscopy techniques. The effect of the deposition parameters and post-deposition annealing treatment on the properties of the layers was investigated. The amorphous-crystalline transformation of pure HfO2 layers is observed to be stimulated by annealing treatment at 800 ° C. It was found that the incorporation of silicon in HfO2 matrix allows to prevent crystallization of the layers and to shift the crystallization temperature to values up to 900 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wilk, G. D., Wallace, R. M. and Anthony, J. M., J. Appl. Phys. 89, 5243 (2001).Google Scholar
2 Houssaa, M., Pantisano, L., Ragnarsson, L.-A., Degraeve, R., Schram, T., Pourtois, G., Gendt, S. De, Groeseneken, G. and Heyns, M.M., Mat. Sci. Eng. R 51, 37 (2006).Google Scholar
3 Pant, G., Gnade, A., Kim, M.J., Wallace, R.M., Gnade, B.E.; Quevedo-Lopez, M.A., Kirsch, P.D. and Krishnan, S., Appl. Phys. Lett 89, 032904 (2006).Google Scholar
4 Kim, J.-H., Ignatova, V.A. and Weisheit, M., Microel. Eng. 86, 357 (2009).Google Scholar
5 Dey, S.K., Das, A., Tsai, M., Gu, D., Flyod, M., Carpenter, R.W., Waard, H. De, Werkhoven, C. and Marcus, S., J. Appl. Phys. 95(9) 5042 (2004).Google Scholar
6 Yamamoto, K., Hayashi, S., Kubota, M. and Niwa, M., Appl. Phys. Lett. 81, 2053 (2002).Google Scholar
7 Park, B.K., Park, J., Cho, M., Hwang, C.S., Oh, K., Han, Y. and Yang, D.Y., Appl. Phys. Lett. 80(13), 2368 (2002).Google Scholar
8 He, G., Fang, Q. and Zhang, L.D., Mat.Sci.Semicond.Proc. 9, 870 (2006)Google Scholar
9 Pereira, L., Marques, A., Águas, H., Nedev, N., Georgiev, S., Fortunato, E. and Martins, R., Mat. Sci. Eng. B 109, 89 (2004).Google Scholar
10 Feng, L.-P., Liu, Z.-T. and Sheh, Y.-M., Vacuum 83, 902 (2009)Google Scholar
11 Visokay, M.R., Chambers, J.J., Rotondaro, A.L.P., Shanware, A. and Colombo, L., Appl. Phys. Lett. 80(17), 3183 (2002).Google Scholar
12 Nguyen, N.V., Davydov, A.V., Chandler-Horowitz, D. and Frank, M.F., Appl.Phys.Lett. 87, 192903 (2005).Google Scholar
13 Frank, M.M., Sayan, S., Dörmann, S., Emge, T.J., Wielunski, L.S., Garfunkel, E., and Chabal, Y.J., Mater. Sci. Eng. B 109, 6 (2004).Google Scholar
14 Zhao, X., Vanderbilt, D., Phys. Rev. B 65, 233106 (2002)Google Scholar
15 Cosnier, V., Olivier, M., Theret, G. and Andre, B., J.Vac.Sci.Technol. A 19, 2267 (2001).Google Scholar
16 Lui, M., Zhu, L.Q., He, G., wang, Z.M., Wu, J.X., Zhang, J.-Y., Liaw, I., Fang, Q. and Boyd, I.W., Appl. Surf. Sci. 253, 7869 (2007).Google Scholar