Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:00:06.147Z Has data issue: false hasContentIssue false

Heteroepitaxy of GaAs on Si and Ge by low-Energy ion Beam Deposition Using Alternating Beams

Published online by Cambridge University Press:  26 February 2011

T. E. Haynes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831
R. A. Zuhr
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831
Get access

Abstract

In this paper, we demonstrate the growth of heteroepitaxial thin films of GaAs at low temperatures on Si(100) and Ge(100) substrates by direct deposition from controlled, low-energy (30-50 eV), mass-separated beams of 69Ga+ and 75As+ ions. This represents the first use of two fully ionized beams for the growth of compound semiconductor thin films. Mixing of the constituents was accomplished by periodically switching tile analyzing magnet to alternate between deposition of Ga and As at approximately monolayer intervals. Ion channeling and transmission electron microscopy show that GaAs films grown on Ge substrates at 400°C are free of the microtwins and stacking fault defects which emanate from the interface of GaAs similarly grown on Si. Single-crystal GaAs films with ion channeling minimum yields of around 6% have been grown on Ge(100) substrates at temperatures from 520°C down to as low as 320°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Amano, J., Thin Solid Films 92, 115 (1982)..Google Scholar
2. Tsao, Y., Chason, E., Horn, K. M., Brice, D. K., and Picraux, S. T., to be published in Nuclear Instruments and Methods in Physics Research Section B (Proceedings of the 6th International Conf. on Ion Beam Modification of Materials, June 12-17, 1988, Tokyo, .lapan).Google Scholar
3. Zalm, P. C. and Beckers, L. J., Appl. Phys. Lett. 4, 167 (1982).CrossRefGoogle Scholar
4. Garrison, B. J., Miller, M. T., and Brenner, D. W., Chem. Phys. Lett. 140, 553 (1988).CrossRefGoogle Scholar
5. Müller, K.-H., J. Appl. Phys. 59, 2803 (1986).Google Scholar
6. Yagi, K., Tamura, S., and Tokuyama, T., Jap. J. Appl. Phys. 16, 245 (1977).Google Scholar
7. Tokuyama, T., Yagi, K., Miyake, K., Tamura, M., Natsuaki, N., and Tachi, S., Nucl. Instrumn. and Methods Phys. Res. Sect. B 182/ 183, 241 (1981).Google Scholar
8. Miyake, K. and Tokuyama, T., Thin Solid Films 92, 123 (1982).CrossRefGoogle Scholar
9. Zuhr, R. A., Appleton, B. R., Herbots, N., Larson, B. C., Noggle, T. S., and Penny-cook, S. J., J. Vac. Sci. Technol. A 5, 2135 (1987).Google Scholar
10. Haynes, T. E., Zuhr, R. A., Pennycook, S. J., Larson, B. C., and Appleton, B. R., to be published in Journal of Vacuum Science and Technology (Proceedings of the 35th National Symposium of the AVS, Oct. 3-7, 1988, Atlanta, GA).Google Scholar
11. Shimizu, S., Tsukakoshi, O., Komiya, S., and Makita, Y., J. Vac. Sci. Technol. B 3, 554 (1985).Google Scholar
12. Maruno, S., Morishita, Y., Isu, T., Nomura, Y., and Ogata, H., Surf. Sci. 201, 335 (1988).Google Scholar
13. Appleton, B. R., Pennycook, S. J., Zuhr, R. A., Herbots, N., and Noggle, T. S., Nucl. instrum. and Methods Phys. Res. Sect. B19/201, 975 (1987).CrossRefGoogle Scholar
14. Haynes, T. E., Zuhr, R. A., Pennycook, S. J., and Appleton, B. R., to be published in Applied Physics Letters.Google Scholar