Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T02:53:00.513Z Has data issue: false hasContentIssue false

Hardness and Abrasion Resistance of Nanocrystalline Nickel Alloys Near the Hall-Petch Breakdown Regime

Published online by Cambridge University Press:  11 February 2011

Christopher A. Schuh
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 8–211, Cambridge, MA 02139, USA
T. G. Nieh
Affiliation:
Materials Science and Technology Division, Lawrence Livermore National Laboratory 7000 East Avenue, L-350, Livermore, CA 94550, USA
Get access

Abstract

The breakdown of classical Hall-Petch scaling remains an area of scientific interest, and will govern the limiting strength of nanocrystalline alloys for structural applications. In this work we discuss the hardness and scratch resistance of nanocrystalline nickel and nickel-tungsten solid solution alloys, assessed through nanoindentation and nano-scratch techniques. The materials have been prepared by electrodeposition, and are fully dense with grain sizes between 6 and 22 nm. In this range of grain sizes, there is some evidence for a breakdown of Hall-Petch scaling, reflected in both the hardness and abrasion data. The role of solid solution alloying on this breakdown is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Froes, F. H., Senkov, O. N. and Baburaj, E. G., Mater. Sci. Eng. A301, 44 (2001).Google Scholar
[2] Valiev, R. Z., Alexandrov, I. V., Zhu, Y. T. and Lowe, T. C., J. Mater. Res. 17, 5 (2002).Google Scholar
[3] Nieman, G. W., Weertman, J. R. and Siegel, R. W., Scripta Metall. Mater. 24, 145 (1990).Google Scholar
[4] Sanders, P. G., Eastman, J. A. and Weertman, J. R., Acta Mater. 45, 4019 (1997).Google Scholar
[5] Natter, H. and Hempelmann, R., Journal of Physical Chemistry 100, 19525 (1996).Google Scholar
[6] Lu, L., Sui, M. L. and Lu, K., Acta Mater. 49, 4127 (2001).Google Scholar
[7] Nieh, T. G. and Wadsworth, J., Scripta Metall. Mater. 25, 955 (1991).Google Scholar
[8] Schuh, C. A., Nieh, T. G. and Yamasaki, T., Scripta Mater. 46, 735 (2002).Google Scholar
[9] Schuh, C. A., Nieh, T. G. and Iwasaki, H., Acta Mater. (2002), in press.Google Scholar
[10] Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).Google Scholar
[11] Erb, U., Nanostructured Materials 6, 533 (1995).Google Scholar
[12] El-Sharik, A. M., Erb, U., Palumbo, G. and Aust, K. T., Scripta Metall. Mater. 27, 1185 (1992).Google Scholar
[13] Ebrahimi, F., Bourne, G. R., Kelly, M. S. and Matthews, T. E., Nanostructured Materials 11, 343 (1999).Google Scholar
[14] Yamakov, V., Wolf, D., Phillpot, S. R. and Gleiter, H., Acta Mater. 50, 61 (2002).Google Scholar
[15] Van Swygenhoven, H., Spaczer, M., Caro, A. and Farkas, D., Phys. Rev. B60, 22 (1999).Google Scholar
[16] Brandes, E. A. and Brook, G. B., eds. Smithells Metals Reference Book, Seventh Edition. 1992, Butterworth-Heinemann: Oxford, UK.Google Scholar