Article contents
H Evolution from Nano-Crystalline Silicon- Comparison of Simulation and Experiment
Published online by Cambridge University Press: 21 March 2011
Abstract
The temperature dependent H evolution from a-Si:H provides unique information on the H-bonding and microstructure. Traditional undiluted a-Si:H films show a high temperature H-evolution peak near 600°C. However device-quality compact nanocrystalline silicon films grown near the phase boundary of amorphous and microcrystalline growth show a new low temperature H- evolution peak near 400°C in addition to a second high temperature peak near 600°C. The origin of this peak cannot be attributed to microvoids or a substantial density of dihydride species typical of porous low-temperature films. We have simulated the H evolution using a molecular dynamics generated model of nanocrystalline silicon, where nano-crystallites reside in a background amorphous matrix. An excess density of H occurs at the crystallite surface. We find a low temperature evolution peak at 250-400°C, where the H-evolution starts from the surface of the nano-crystallite. In addition there is a higher temperature peak at 700-800°C providing good agreement with H-evolution measurements. The mobile H is found to exist in both the bond-centered type of species and H2 molecules – which has implications for H-diffusion models.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004
References
REFERENCES
- 4
- Cited by