Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T19:58:38.784Z Has data issue: false hasContentIssue false

Growth of Yb:Y2O3 single crystals by the micro-pulling-down method

Published online by Cambridge University Press:  01 February 2011

A. Novoselov
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980–8577, Japan
J. H. Mun
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980–8577, Japan
A. Yoshikawa
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980–8577, Japan
G. Boulon
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980–8577, Japan Physical Chemistry of Luminescent Materials, UMR 5620 CNRS, Claude Bernard/Lyon1 University, 69622 Villeurbanne, France
T. Fukuda
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980–8577, Japan
Get access

Abstract

(Ybx Y1-x)2O3 (x = 0.0, 0.005, 0.05, 0.08 and 0.15) promising single crystal laser rods of 4.2 mm in diameter and 15–20 mm in length have been grown from the rhenium crucible by the micro-pulling-down method in Ar + H2(3–4%) atmosphere. Linear decrease of lattice constant with the increase of Yb3+-content was observed. High homogeneity of the Yb3+-dopant distribution has been demonstrated. Absorption, emission and Raman spectra have been recorded and decay time was approximated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weber, M. J., Phys. Rev. 171, 283 (1968).Google Scholar
2. Fornasiero, L., Mix, E., Peters, V., Petermann, K., and Huber, G., Cryst. Res. Technol. 34, 255 (1999).Google Scholar
3. Boulon, G., Brenier, A., Laversenne, L., Guyot, Y., Goutaudier, C., Cohen-Adad, M.-Th., Metrat, G., and Muhlstein, N., J. Alloys Compd. 341, 2 (2002).Google Scholar
4. Brenier, A. and Boulon, G., Europhys. Lett., 55, 647 (2001).Google Scholar
5. Peters, V., Bolz, A., Peterman, K., and Huber, G., J. Cryst. Growth 237–239, 879 (2002).Google Scholar
6. Barta, C., Petru, F., and Hajek, B., Die Naturwiss. 45, 36 (1957).Google Scholar
7. Changkang, C., Wanklyn, B. M., and Ramasamy, P., J. Cryst. Growth 104, 672 (1990).Google Scholar
8. Gasson, D. B. and Cockayne, D. S., J. Mater. Sci. 5, 100 (1970).Google Scholar
9. Tissue, B. M., Lu, L., Ma, L., Jia, W., Norton, M. L., Yen, W. M., J. Cryst. Growth 109, 323 (1991).Google Scholar
10. Shirakawa, A., Takaichi, K., Yagi, H., Bisson, J-F., Lu, J., Musha, M., Ueda, K., Yanagitani, T., Petrov, T. S., and Kaminskii, A. A., Opt. Express 11, 2911 (2003).Google Scholar
11. Fukuda, T., “Growth of Micro and Bulk Crystals by Modified Micro-PD and their Properties,” Fiber Crystal Growth from the Melt, ed. Fukuda, T., Rudolph, P., and Uda, S. (Springer, 2004) pp.255281.Google Scholar
12. Laversenne, L., Guyot, Y., Goutaudier, C., Cohen-Adad, M.-Th., and Boulon, G., Opt. Mater. 16, 475 (2001).Google Scholar
13. Chang, N. C., Gruber, J. B., Leavitt, R. P., and Morrison, C. A., J. Chem. Phys. 76, 3877 (1982).Google Scholar