Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T21:32:54.999Z Has data issue: false hasContentIssue false

Growth of TiO2 Particles within a Polymeric Matrix

Published online by Cambridge University Press:  15 February 2011

J. W. Burdon
Affiliation:
Arizona Materials Laboratory, 4715 East Fort Lowell Road, Tucson, Arizona 85712 USA.
Paul Calvert
Affiliation:
Arizona Materials Laboratory, 4715 East Fort Lowell Road, Tucson, Arizona 85712 USA.
Get access

Abstract

As a simple model for biomineralization we are investigating the deposition of oxide particles into polymers by the in situ hydrolysis of oxides. By light scattering and electron microscopy we have observed the development of titania in polyvinylchloride. Hydrolysis is due to exposure to atmospheric moisture after film formation under very dry conditions. We believe of alkoxide initially phase separate and then are hydrolysed. Using a strongly Aolymer as a matrix for silica formation we present evidence for catalysis of particle -tby the matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Calvert, P. D. and Mann, S., J. Mater. Sci., 23, 3801 (1988).Google Scholar
2. Mazdiyasni, K. S., Ceram. Int., 8(2), 4256 (1982).Google Scholar
3. Prassas, M. and Hench, L. L., Ultrastructure Processing of Ceramics, Glasses, and Composites., 9, 100 Wiley (1984).Google Scholar
4. Hartel, R. W. and Berglund, K. A.., MRS Symposia 73, 633 (1986).Google Scholar
5. Bergland, K. A., Przybocki, C. L., and Giannelis, E. P.., Ultrastructure Processing of Advanced Ceramics., 62, 807 Wiley (1984).Google Scholar
6. Higgins, J. S. and Stein, R. S., J. Appl. Cryst., 11, 346 (1978).Google Scholar
7. Matijević, E., Acc. Chem. Res., 14, 22 (1981).Google Scholar
8. Colombian, Ph., Ceram. Int., 15, 2350 (1989).Google Scholar
9. Stöber, W., Fink, A., and Bohn, E., Colloid, J. and Interface Sci., 26, 6269 (1968).Google Scholar
10. Barringer, E. A. and Bowen, H. K., Comm. Am. Ceram. Soc., 65, C199 (1982).Google Scholar
11. Fegley, B. Jr, and Barringer, E. A., MRS Symposia 32, 187 (1984).Google Scholar
12. Calvert, Paul and Broad, R.A., ”Routes to composites and ceramics by in situ precipitation in polymers”, in “Contemporary topics in Polymer Science” vol.6, Culbertson, W.M. ed., Plenum, N.Y., 1989.Google Scholar
13. Calvert, Paul and Broad, R.A., ”Biomimetic routes to thin ceramic films”, MRS Symposia 174 “Materials Synthesis Utilizing Biological Processes” Rieke, P.C., Calvert, P.D., Alper, M., eds. 1990.Google Scholar
14. Mauritz, K.A. and Jones, C.K., J. Appl. Polymer Sci. 40 1401 (1989)Google Scholar
15. Calvert, P.D., ”Precipitation of Monodisperse Ceramic Particles: Theoretical Models” Mat.Res.Soc.Symposia 73, 79 (1986)Google Scholar